RL-TR-96-3
In-House Report
February 1996

WAVES-VHDL INTEGRATION
FOR COMMON APPLICATIONS

Steven Drager, Christopher Flynn, Frederick Hall,
James Hanna, Robert Hillman, and James Nagy

[DEI0 QUALTTY TNBPECTED &

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

19960611 118

Air Force Materiel Command
Rome, New York

 DISCLADMER NOTICE

- THIS DOCUMENT IS BEST
'QUALITY AVAILABLE. THE
COPY FURNISHED TO DTIC
" CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
NOT REPRODUCE LEGIBLY.

This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS it will be
releasable to the general public, including foreign nations.

RL-TR-96-3 has been reviewed and is approved for publication.

APPROVED: 8‘7,”“4 C. B @,@%Aﬂ/&)

EUGENE C. BLACKBURN
Chief, Electronics Reliability Division
Electromagnetics & Reliability Directorate

FOR THE COMMANDER: W E/ _ % a

JOHN J. BART
Chief Scientist, Reliability Services
Electromagnetics & Reliability Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please notify
Rome Laboratory/ERDD, Rome, NY 13441. This will assist us in maintaining a current

mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

Form Approved
REPORT DOCUMENTATION PAGE B e 0158
B o e O e faes posdes, and compIEting and rewieming, g L e e e e vyt birdn bomate or 3y Other 33pact Of s
collection of in'f'odr ion ’mcluding ggestions for reducim’; this burden. to Washington Headquarters Services, Directorate for Information Operations anq Reports, 1215 Jetferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
February 1996 In-House April 1995 - October 1995
4. TITLE AND SUBTITLE S. FUNDING NUMBERS i
PE - 62702F
WAVES-VHDL. INTEGRATION FOR COMMON APPLICATIONS PR - 2338
TA - 01
6. AUTHOR(S) WU - 8P

Steven Drager, Christopher Flynn, Frederick Hall,
James Hanna, Robert Hillman, and James Nagy

>~ PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 3. PERFORMING ORGANIZATION
Rome Laboratory (ERDD) REPORT NUMBER

525 Brooks Rd.
Rome, NY 13441-4505 RL-TR-96-3

NCY NAME(S) AND ADDRESS(ES 10. SPONSORING / MONITORING
9. SPONSORING / MONITORING AGENC AME(S) (ES) SO O e RT NUMBER
Rome Laboratory (ERDD)
525 Brooks Rd.

Rome, NY 13441-4505

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Steven Drager/ERDD, (315)330-2735

e—————————————————————
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release, distribution unlimited.

E—
13. ABSTRACT (Maximum 200 words)

This report provides an explanation of how to use the IEEE Waveform and Vector
Exchange Specification (WAVES) language, an industry standard for representing
digital stimulus and response data for both the design and test communities, in
conjunction with the VHSIC Hardware Description Language. The common complaint
heard through the user community has been the complexity and difficulty in using
WAVES to verify a VHDL model. This work has addressed this complaint by creating
four common library packages WAVES_ 1164 Pin Codes, WAVES_1164_ Logic Value,
WAVES 1164 Frames and WAVES_1164 Utilities as well as an automatic testbench
generation tool to support the WAVES-VHDL testbench configuration and mitigate
the complexity for the average user. The report first provides a discussion on
each of these packages, so that the user may understand how the packages may be
utilized. Then design examples are provided to demonstrate the usage and utility
of the libraries as well as to walk the user through the usage of the testbench
generation tool.

14. SUBJECT TERMS 15. NUMBER OF PAGES
VHSIC Hardware Description Language (VHDL), 128
Waveform and Vector Exchange (WAVES) 16. PRICE COOE

17. SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION [20. UMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

;;ess.c]réged by ANSI Std. 239-18

TABLE OF CONTENTS

TABLE OF CONTENTS ..o ttititiiiat ettt ettt e ettt it ettt a et i
TABLE OF FIGURES ... ittt ettt ettt n e v
TABLE OF LISTINGS ... ttiititittittt ettt ettt et e et s et ettt e e easenes vi
TABLE OF TABLES ... ettt ettt ettt e e ettt bttt r e e aaaenees vil
CHAPTER 1: INTRODUCTIONttt ittt ettt e e 1
1.1 INTRODUCTION. ...ttt ettt ettt e e e et et be ittt er et ananes 1
1.2 WAVES HISTORY ..tittintititennt ettt et et ettt e ettt anaeees 2
1.3 WAVES-VHDL MODELING AND SIMULATIONcooiiiiiiiies 2
1.4 WAVES COMMON PACKAGES ..ottt 4
1.4.1 WAVES 1164 LOGIC VALUES ... 5
1.4.2 WAVEFORM SHAPES. ... oot 5
1.4.3 TESTBENCH UTILITIES ...ttt ittt aeaes 5

1.5 OVERVIEW. ..ottt ittt et et ettt e e e e st et e ettt eaaass 6
CHAPTER 2: WAVES LOGIC VALUE SYSTEM FOR IEEE STD 1164-1993.................... 7
2.1 INTRODUGCTION. .. ittt ettt et ettt et e ettt ettt et eanaaes 7
2.2 WAVES 1164 PIN_CODES.......cittiiitiiiiiiitiiiieieree et 7
2.3 WAVES_1164 LOGIC_VALUEcoiiiiiiiiiiiii e 8
CHAPTER 3: WAVES FRAME SETFORMATSo 11
3.1 INTRODUCGCTION. ...ttt ittt ettt it e et et et et teeataneaans 11
3.2 TERMINOLOGY ... ttitttintetiten ettt ettt et et et e it et ettt s e aaneas 11
3.3 PATTERN DATA DEPENDENCY ..ottt 14
3.4 DRIVE FORMATS. ..ottt ettt e et e vt e ettt eeas 15
3.4.1 COMPOUND FORMATS ..ottt 15
3.4.2 PULSE FORMATS. .. ettt ettt et e e ee e 20

3.5 EXPECTED OUTPUT FORMATS ...t 25
CHAPTER 4: WAVES TESTBENCH UTILITIES PACKAGE FOR IEEE STD 1164............ 28
4.1 INTRODUCGTION. ...ttt ettt ettt et et e te it s e et et e taeaeetans 28
4.2 WAVES TRANSLATION FUNCTIONS. ..ottt 30
4.3 WAVES COMPATIBLE FUNCTIONS. ..ot 33

TABLE OF CONTENTS (continued)

CHAPTER 5: WAVES TESTBENCH TOOL........ciiettiiiieuuuuensnnnnenneenneinnennennenaaannnnns 34
5.1 INTRODUCTION. . ..o oottt et e e e e e e e e e e e e e ettt eeaeaaaaans 34
5.0 OVERVIEW . . oot e e e e e e e e e e e e e e e e e e et e e e e e e 34
5.3 STTE SETUP. . .o oo oot e e et e aaas 35

5.3.1 XTSTB SETUP. ..o o ettt et a e e e eenennaanes 35
532 WAVES LIBRARIES SETUPceeeeeeieeeeeeeieeeeeaaasssssesssseinbnsnnennnnansennns 36
5.4 D FLIP-FLOP EXAMPLE WALK THROUGHccvvvvvieieeriieeeeeeeeneeeeeeneennann, 36
5.4.1 CREATE WORKING LIBRARYceeiiiiiiiitaiiiieiisnnnnninseeiiteiieiiisenens 37
542 WAVES DATA SET CREATIONccceveeiieiinnenns e 38
5.4.2.1 XTSTB BUTTON USAGEoumuuuuuuiuieeieeeeseaaaaeaaeeesrssensniisaaeaeeeeenenns 39
5.4.2.2 XTSTB CHECKBOX USAGEovvvuuiiiiiiiieeeeaaeeaaseereeeeeiaiiieneeeeaeens 40
5.4.2.3 SYNTAX CHECK OF EXTERNAL PATTERN FILE.........cceevveiiiiinneeene 41
5.4.3 FILES GENERATEDuvvveeeeeeeeeeeee e e e e e e e e e e e e eeee e e e 42
5.4.3.1 HEADER FILE .. .oiiitoiete et ee e e e e e e e e e e e e e ee et eeeeeeeas 43
5.43.2 TEST PINS PACKAGE............ccceeevviianans e 44
5.4.3.3 WAVEFORM GENERATOR PACKAGEcccoieiiieeiiiiiiiiiiiiiieeeeeeeeeeiiins 44
5.4.3.4 WAVES-VHDL TESTBENCH.ceitiiet ittt itieeeeiiesnnsiiiiiiie e 46
5.4.4 ANALYZE AND SIMULATE WAVES AND VHDL PACKAGES 49

CHAPTER 6: EXAMPLES« eeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e e ettt nnaes 50
6.1 INTRODUCTION. ... eeeeeeeeeeee e e e e e e e e e e e oo et e e et ettt aaeneenaanes 50
6.2 EXAMPLE 1: 54/74180: 8 - BIT PARITY GENERATOR/CHECKER 50

6.2.1 DEVICE SPECIFICATIONSeieeeeetee ettt ee et oot 50
6.2.2 TOOL USAGE EXPLANATION.......evuuuiuieeeeeaeeeeaeeeeeeessssnennaneeeeenaennns 51
6.2.3 SIMULATIONoiititet et e et e s e eeeaaeaeans 53
6.3 EXAMPLE 2: SN54/74A1.88169: SYNCHRONOUS 8 - BIT UP/DOWN BINARY
COUNTER .o oo oo oo e et e e e e e e et e e e ettt 53
6.3.1 DEVICE SPECIEICATIONSvveueueeeeeeeeeeeaeeeeeeeeessssasse e e eeeeeeeenneans 53
6.3.2 TOOL USAGE EXPLANATION.ccceiiiiiiiiatiietiieieeiannnnnei e 55
6.3.3 SIMULATIONot e e e e e e e e e e e e e e e e e e 56

il

TABLE OF CONTENTS (continued)

6.4 EXAMPLE 3: 541.S/741.8299: 8 - INPUT UNIVERSAL SHIFT/STORAGE REGISTER

.. 56
6.4.1 DEVICE SPECIFICATIONSvveveeeeeeeeeeeeeiee e e e eeitee e e e e e eiaraneeeees 56
6.4.2 TOOL USAGE EXPLANATION.uueiieieeiesieieeeeeeeeeeeeeiiirreeeaaaaeeens 58
6.4.3 SIMULATIONooveeeeeee et e e e e e e e et e e e e et essaenees 60

REFERENCES. .. eeeeeee e e e e ettt e et e e e e e e e e 61
APPENDIX 1: WAVES_1164 PACKAGESoeeeeeeeieeeeee e 62
Al.l WAVES_1164_PIN_CODES PACKAGE............ s 62
Al.2 WAVES_1164 LOGIC_VALUE PACKAGE.cccouieiiiaeeeeeeciiiiiiieeeeaaeeeens 63
APPENDIX 2: WAVES_ 1164 FRAMES PACKAGEcccuvviiiiiieaeeeiiiiiieerieaeaeaeens 65
APPENDIX 3: TESTBENCH UTILITIESeeteeueeeeeeeeeeeeiieee e e e e e e e eeiisareeaaaaeeeeens 69
APPENDIX 4: TESTBENCH USER’S GUIDE.oeiiiiiiiiiiiiiieeeeeeeeeieiiirareeeeeaae e 74
A4.L VHDL MODEL ..ot e e e e e e e e e e e e s e ese s 74
A4.2 WAVES HEADER FILEeeeeeeeeeeeeee e et rae e 75
A43 WAVES PINS PACKAGEooeeeeeee oot e e 76
Ad.4A WAVES GENERATOR PACKAGEvvvveveeeieeeeee et 77
A45 WAVES TESTBENCH CODE ... oeeeeeeeeeee e e e 78
A4.6 EXTERNAL VECTOR FILEeiieioieee e 80
APPENDIX 5: 54/74180 8 - BIT PARITY GENERATOR/CHECKER..........cccveeeieeeenennnn 81
A5.1 VHDL MODEL ... ee e et e aena s 81
A5.2 WAVES HEADER FILE ..ottt ee e et e et e e 83
A5.3 WAVES PINS PACKAGE ...ttt eae e 84
A5.4 WAVES GENERATOR PACKAGEcccoiiiiiiiieieeeeeieieeeeeeeeeeeaiveee e 85
A5.5 WAVES TESTBENCH CODEccieieiiiiieeeeeeee e e e e e e e ee e e e e e e e e 86
A5.6 EXTERNAL VECTOR FILEoeivveeeeee e et eevavaraeae e 88
APPENDIX 6: SN54/74A1.S8169: SYNCHRONOUS 8 - BIT UP/DOWN BINARY
COUNTER .. oo oottt e e e e e e e e e e e e e e e e e s e s ee e e 89

A6.1 VHDL MODELoietioeeee e e e e e e e e e et e e e e e e e e reaeeens 89

A6.2 WAVES HEADER FILE ..o eeee ettt e e e e e e 92

A6.3 WAVES PINS PACKAGEooeeieiee et e e e 93

iii

TABLE OF CONTENTS (continued)

A6.4 WAVES GENERATOR PACKAGEcooiiiii e 94
A6.5 WAVES TESTBENCH CODEcoiiiiiiiiiiiiiiii e 96
A6.6 EXTERNAL VECTOR FILEccoiiiiiiiiiiiii e 99
APPENDIX 7: 541.S/741.5299 8 - INPUT UNIVERSAL SHIFT/STORAGE REGISTER ... 103
AT7.1 VHDLMODEL ...t e 103
A72 WAVESHEADERFILE ..o e 106
A7.3 WAVESPINSPACKAGEoiiiiiiiiiiiii e 107
A7.4 WAVES GENERATOR PACKAGEcoioiiiiiii e 108
A7.5 WAVES TESTBENCH CODE.......cociiiiiiiiiiiiiiiii e 110
A7.6 EXTERNAL VECTOR FILEcc.ouiiiiiiiiiii e 113

v

TABLE OF FIGURES

Figure 1.3.1 WAVES usage environment prior to this work.............c....coo. 3
Figure 1.3.2 New WAVES library Structure...........c..coveviiiiiiii, 4
Figure 3.2.1 Sample Input/Output Waveforms and WAVES Slices.oooiinnnn, 12
Figure 3.4.1 Non-Return Waveform.oooviiiiiiiini 15
Figure 3.4.2 Return High Waveform.............oooiii, 16
Figure 3.4.3 Return Low Waveform.oooiiiii, 17
Figure 3.4.4 Surround by Complement Waveform.............co.cooiiiiii, 18
Figure 3.4.5 Pulse Low Waveform.............ooiiiiiii 21
Figure 3.4.6 Pulse Low Skew Waveform.c.oooiiiiiii 22
Figure 3.4.7 Pulse High Waveform.ooiiiiiiii 23
Figure 3.4.8 Pulse High Skew Waveform...............coocooiii 24
Figure 3.5.1 Window Strobe Waveform...........cocviiiiiiiiiii 26
Figure 3.5.2 Window Skew Strobe Waveforms.c..coooooiiii . 27
Figure 4.1.1 Functionality. ..ottt 29
Figure 4.2.1 Bi-Directional Mappings.........c.oeueuueriiuieneniiiiiiiiiiiiieieaes 31
Figure 5.2.1 Final WAVES-VHDL Library Structure..............ccoooii. 35
Figure 5.4.1 Initial XTSTB SCIEEM. ...cuuiviniiiiiiiiiiii e 38
Figure 5.4.2 XTSTB Main Window........c.oouiiniiiiiiiiii 39
Figure 5.4.3 Syntax Check Window.oooiiiiiiii 42

TABLE OF LISTINGS

Listing 2.2.1 WAVES_1164_Pin_Codes Package.............ccocoviiiiiiiiiiiiiiiiiiiiiiieieeeeaen 7
Listing 2.3.1 WAVES_1164_Logic_Value Package Specification...............c.cocevviiiiniinnen.. 8
Listing 3.2.1 WAVES_1164_frames package declaration.cooeiennin. s 13
Listing 3.4.1 Non-Return Frame set declaration.coooviiiiiiiiiiiiiiiiniiineen, 15
Listing 3.4.2 Return High Frame set declaration...............c.ccooiiiiiiiiiiiii i, 16
Listing 3.4.3 Return Low Frame set declaration.ooociiiiiiiiiiiiiiiiine, 17
Listing 3.4.4 Surround by Complement Frame set declaration...............c.cooeviiiiiiiiiinne.. 19
Listing 3.4.5 Pulse Low Frame set declaration.............c..cociiuviiiiiniiiiiiiiiiieninieans 21
Listing 3.4.6 Pulse Low Skew Frame set declaration.ccoeieiiiiiiiiiiniiiiiiinnans 22
Listing 3.4.7 Pulse High Frame set declaration (first instantiation).............c.cceeveneieienen.. 23
Listing 3.4.8 Pulse High Frame set declaration (second instantiation).cccoeeevnnnn.. 24
Listing 3.5.1 Window Frame set declaration.cooooiiiiiiiiiiiiiiiiiii e 26
Listing 3.5.2 Window Skew Frame set declaration..............ccoooviiiiiiiiiiiiiiiiiiiinineene.. 27
Listing 4.1.1 WAVES_1164_UTILITIES Declarations Section.cccccvveeiieriniiinennnnnns 30
Listing 5.4.1 VHDL D-flip-flop Model.........cc.ouiuiiiiiiiiii e 37
Listing 5.4.2 External Vector File............cooiiiiiiiiiiiii e 42
Listing 5.4.3 WAVES D-Flip Flop Header File...........c..cociiiiiiiiiiiin 43
Listing 5.4.4 WAVES D-Flip Flop Test Pins Package.cccooiiiiiiiiiiiin.. 44
Listing 5.4.5 WAVES Waveform Generator Package..................coocoi . 46
Listing 5.4.6 WAVES-VHDL Testbench.c.coooiiiiiiiiiiiiiiiiiiiieece 49
Listing 6.2.1 Unedited waveform generator frame set array declaration. 52
Listing 6.2.2 Edited waveform generator frame set array declaration..............c..cocvvenieieenen, 52
Listing 6.3.1 Unedited in_pins constant declaration.c.ooviiiiiiiiiiiiiiiiiiiiiiiennn, 55
Listing 6.3.2 Edited in_pins constant declaration.c..cooeiiviiiiiiiniiiiiiniiic e 55
Listing 6.3.3 Unedited waveform generator frame set array declaration.c.o.oeeuens 56
Listing 6.3.4 Edited waveform generator frame set array declaration.....................cooooentn. 56
Listing 6.4.1 Unedited waveform generator frame set declaration.cooevievieineinnn... 59
Listing 6.4.2 Edited waveform generator frame set declaration.cooooiiiiiininnn, 59

vi

TABLE OF TABLES

Table 4.2.1 STIM_1164 MAPPINGS. ++uevnvnerniininiinitiineieienetaiaen et esti e 31
Table 6.1.1 8-Bit Parity Checker/Generator Pin Labels.c....cooooin. 51
Table 6.1.2 8-Bit Parity Checker/Generator Truth Table...............c.cooi, 51
Table 6.2.1 Synchronous 8-Bit Up/Down Binary Counter Pin Labels...............cc..oiiinnnne. 54
Table 6.2.2 Synchronous 8-Bit Up/Down Binary Counter Truth Table.................coooiiiis 54
" Table 6.3.1 8-Input Universal Shift/Storage Register Pin Labels. ..o, 57
Table 6.3.2 8-Input Universal Shift/Storage Register Truth Table...............ccooooiiiiiinnn. 57
vii

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

The intent of this Technical Report is to provide potential users with an explanation of how to use
the IEEE Standard for Waveform and Vector Exchange (WAVES) [1] in conjunction with the
VHSIC Hardware Description Language (VHDL). WAVES is an industry standard for
representing digital stimulus and response data for both the design and test communities. The
WAVES standard format was developed to support users in the exchange of waveform information
between multiple simulator and tester environments. The WAVES standard provides for the
faithful exchange of test verification data between systems. WAVES, being a non-proprietary
standard, provides a design to test link between these systems by establishing a common data

exchange capability.

This report intends to provide the reader with a basic understanding of how to utilize a common set
of WAVES elements in VHDL design verification. The authors will first introduce the reader to a
common set of support utilities for WAVES and relate them to a functional understanding of how
they are utilized. This approach suggests a methodology that minimizes the work involved by an
individual through the use of a common user library. This methodology does not restrict the user,
but rather provides an organized scheme to eliminate repetitive work and reduce the learning cycle
for WAVES.

The material presented in this report assumes that the user has a basic knowledge of VHDL
modeling and test verification. The material addresses the needs of both the design engineer and
the test engineer. For the designer, some familiarity or knowledge of VHDL is required in
understanding the use of WAVES in conjunction with VHDL. The test engineer should be familiar
with a high level programming language in order to understand how to represent a waveform for

application on an Automated Test System (ATS).

1.2 WAVES HISTORY

The name WAVES was chosen carefully. The words “waveform” and “vector” indicate that
WAVES may represent simulator event trace data, as well as the highly structured test vectors
typical of automated test equipment. The word “exchange” means that WAVES is meant for the
exchange of information between vendors as well as design and test environments. WAVES was

not, however, designed to replace the stimulus/response formats used within a given environment.

Because WAVES is an exchange specification, all facets of the stimulus and response data must be
captured. Nothing must be left to the reader’s imagination, for everyone has slightly different
interpretations about what constitutes expected data. What is “obviously right” to one engineer is
likely to be “obviously wrong” to another. When exchanging information between environments,
assumptions are dangerous and often incorrect. Therefore, WAVES data stands alone and does
not require anything in common between sender and receiver, other than an adherence to the
WAVES specification.

WAVES is a subset of IEEE Std 1076-1993, also known as VHDL [2]. Anyone with an
understanding of VHDL will have an easy time understanding the syntax and semantics of
WAVES. However, complete knowledge of VHDL is certainly not a prerequisite for
understanding WAVES. WAVES includes only the sequential portion of VHDL, which means
that WAVES is essentially an algorithmic programming language. Anyone familiar with a modern
programming language, such as Ada or C++, will have no trouble reading WAVES source code.

VHDL was chosen as the basis for WAVES because VHDL is so important in the design phase of
electronic components and modules. VHDL is a standard representation for modeling and
simulating digital circuits. Extensive effort has gone into the design of VHDL, so there was no
reason to repeat that work by designing a totally new language. Finally, many design
environments are available for VHDL, and these may be used without change on a WAVES data

set.

1.3 WAVES-VHDL MODELING AND SIMULATION

The acceptance of a standard as a common practice is slow and requires an iterative process
involving user demand, support tooling and user acceptability. Tool vendors will only invest in a
tool development when it is apparent there is a profitable market available. Users, on the other

hand, require both tool support as well as an understanding of the standard and the benefits of
using that standard. The main ingredient to the adoption of a standard as a common practice is the
availability of information for the use and application of the standard. The focus of this section is
to discuss the work performed to enhance the integration of WAVES for model simulation and

verification.

User Library WAVES Standard Library

Logic_value WAVES_System

Pin_codes
Frame_sets

Value_Dictionary o
WAVES_Standard

External File

Header File

Pre-compiled WAVES

i

Test Bench VHDL Model

User Developed WAVES

User Developed VHDL

Figure 1.3.1 WAVES usage environment prior to this work.

The initial complexity of WAVES, prior to performing this work, is shown in Figure 1.3.1. The
lack of tool support easing this complexity was identified as a weak point in achieving widespread
WAVES utilization. In order to utilize WAVES, a person had to be well versed in the syntax, -
semantics and usage of WAVES so that they could create all of the necessary files to perform the
simulation. Therefore, tools and libraries have been developed to mitigate the complexity for the

average user.

Figure 1.3.2 shows the new library structure. The complexity of the User Library has been
reduced through the creation of the WAVES 1164 Library, which provides a pre-defined
environment for common applications of WAVES and VHDL. The WAVES 1164 Library
elements were developed to reduce the learning curve by providing a set of predefined library
functions which will meet 90% of all users needs. The hope is that these packages will eventually

be integrated into the WAVES Language Reference Manual (LRM). Chapters 2, 3 and 4 will
discuss each of the new functions placed in the WAVES 1164 Library.

A prototype automatic testbench generation tool has also been developed based on these library
elements. The purpose of the tool is to provide a methodology that minimizes the work involved
by an individual by exploiting the use of a common user library. The tool automatically generates a
testbench, which not only applies WAVES stimulus to the model, but verifies the validity of the
expected responses. Additionally, others tools have been developed to support the generation of

the WAVES data set.

WAVES Standard Library

WAVES 1164 Library WAVES. System WAVES_Standard

Pre-compiled WAVES

Figure 1.3.2 New WAVES library structure.

1.4 WAVES COMMON PACKAGES

There are three different sets of library functions necessary to support the WAVES-VHDL
testbench configuration. The library functions address IEEE Std 1164-1993 logic values,
waveform shapes, and testbench utilities. Chapters 2 through 4 will describe the library functions
generated to create the WAVES 1164 library. Chapters 5 and 6 will discuss the WAVES and

VHDL elements related to the user’s library space.

1.4.1 WAVES 1164 LocGic VALUES

First, a WAVES logic value system was created. These WAVES packages define a logic value
system based on the IEEE Std 1164-1993 Multivalued Logic System [3]. They provide a library
of reusable elements for WAVES users who are developing VHDL models that are compliant with
the IEEE standard logic package. WAVES logic values define the events that occur on the
waveform signals generated by the WAVES data set. This logic value system is almost identical to
the Std 1164 logic values, however, they also account for the waveform signal direction which is

required to generate a self monitoring testbench.

1.4.2 WAVEFORM SHAPES

A second set of library functions was created to establish a set of basic waveform shapes (formats)
that may be used to construct complete, complex waveform descriptions for all of the input and
output signals for a given model or unit under test (UUT). A WAVES waveform is comprised of
three basic elements: pattern data (the truth table data), format (the waveform shape), and timing
(the edge transition points). These three elements combine to create the waveforms for data input
to the model (the drive data) and the data expected on the output of the model (the expect or
compare data). A library of functions that generate common shapes was constructed to simplify
the waveform generation process and provide a link to ATS utilization. The library functions are

used to specify the format and timing values associated with the supplied pattern data.

1.4.3 TESTBENCH UTILITIES

The third set of library functions developed provide for the integration and tool support for using
WAVES in the VHDL simulation environment. This library of functions provides the means to
connect the WAVES port list signals to the model and evaluate the model response for
compatibility to the WAVES expected response. The library, when utilized in conjunction with the
testbench tool, eliminates hand development of the testbench. The functions generated have been

developed to support any testbench with uni-directional or bi-directional pins.

1.5 OVERVIEW

This report does not describe the WAVES standard, but rather builds upon a common set of
utilities from which a user may build a waveform description for a specific UUT. Chapters 2
through 4 introduce and explain the basic comstruction of the common library packages and
establishes the framework for the examples that follow. Chapter 5 discusses in detail the
automation tools and how they aid a user in creating their WAVES data sets and generating a
VHDL testbench for applying the stimulus and response to the models within a VHDL simulation
environment. These tools were developed specifically around the library packages described in
Chapters 2 through 4. Chapter 6 contains three complete model examples which demonstrate the
utility of the library packages and the support tool. Each example in Chapter 6 introduces a new
aspect of either the tool-generated output or the concepts supported by the library packages.
Fragments of the examples appear in the text of each section with the complete VHDL model,

WAVES data set and VHDL testbench appearing in the respective Appendix.

CHAPTER 2: WAVES LOGIC VALUE SYSTEM
FOR IEEE STD 1164-1993

2.1 INTRODUCTION

This chapter presents and describes the WAVES packages that define a logic value system based
on the IEEE Std 1164-1993, Multivalued Logic System. These packages provide a library of
reusable elements for WAVES users in developing VHDL models that are compliant with the IEEE
standard logic package. WAVES logic values define the events that occur on the signals of the
waveform. This WAVES logic value system provides the basic building blocks for constructing
the frame shapes that are described in the next chapter. This logic value system consists of three
WAVES declarations that reside in two packages: WAVES_1164_Pin_Codes and
WAVES_1164_lLogic_Value.

2.2 WAVES 1164 PIN_CODES

The first package, WAVES_1164_Pin_Codes, contains the constant declaration of a string that
enumerates all of the legal 1164 pin codes that may appear in the WAVES external (truth table)
vector file. The name of this constant is pin_codes. The code for this package is given in listing
2.2.1. |

PACKAGE waves_1164_pin_codes IS
CONSTANT pin_codes : STRING := "X01ZWLH-";
END waves_1164_pin_codes;

Listing 2.2.1 WAVES_1164_Pin_Codes Package.
The pin codes string declaration includes all of the legal IEEE standard 1164 codes except ‘U’
(uninitialized). The order of the elements of the pin codes string is not significant. They have been

declared in this order for consistency with IEEE Std 1164-1993.

Omitting the ‘U’ from the list of 1164 codes that are allowed eliminates its use in a WAVES

external file. The reason is that it makes little sense to drive a model input with an uninitialized
value. The uninitialized state, ‘U’, of a given signal is dictated by the initial state of the model
during elaboration, not by the values placed on the inputs of a model by the testbench. Likewise, it
makes no sense to require and verify that a given model output generates an uninitialized value. In
fact, we expect the signals of the model to be uninitialized when simulation begins, but we don’t
actually verify that their value is “U’. Typically, we don’t look at the values of model outputs until
we care what their values actually are. Therefore, there is no reason for the WAVES data set to

expect a ‘U’ on a given signal.

2.3 WAVES 1164 _LoGIC_VALUE

The second package, WAVES_1164_Logic_Value, contains an enumerated type declaration and a
function declaration. The name of the enumerated type is logic_value and the name of the

function is value_dictionary. The code for the package specification is given in listing 2.3.1.

LIBRARY waves_std;
USE waves_std.waves_standard.ALL;
PACKAGE waves_1164_ logic_value IS

TYPE logic_value IS
(
dont_care,
sense_x,
sense_0,
sense_1,
sense_z,
sense_w,
sense_1,
sense_h,
drive_x,
drive_0,
drive_1,
drive_z,
drive_w,
drive_1,
drive_h);

FUNCTION value dictionary(value : logic_value)
RETURN event_value;

END waves_1164_ logic_value;

Listing 2.3.1 WAVES_1164_Logic_Value Package Specification.

There are several interesting aspects to this package. First, the package is placed in the context of
the WAVES_Standard package. This is required to make the event_value type visible. Next the
logic_value enumerated type is declared. This enumeration type declares the names of all of the
legal logic values that can be used to generate events on a waveform. The first logic value that is
listed is dont_care which corresponds to the ‘-’ code in Standard Logic. Next, there is a set of
sense logic values and a set of drive logic values for each of the following Standard Logic codes,
‘X, ‘o, ‘1, ‘Z2’, ‘W, ‘L’, and ‘H’. Also, notice that as discussed for the
WAVES_1164_Pin_Codes package, no logic value corresponds to the Standard Logic code ‘U’.
Finally, the value_dictionary function is declared. This function will be discussed below. First
we will discuss the grouping of the elements of the logic_value declaration.

The logic values enumerated above represent three separate groupings: the dont_care group, the
sense group, and the drive group. This grouping reflects the different nature and use of these
logic values. The dont_care logic value appears first in the declaration for initialization reasons.
After elaboration, all signals not explicitly assigned a default value have the value T left, where T is
the type mark of the signal. This causes the post elaboration values of each signal of the WAVES
data set to be dont_care, since Logic_value’left is dont_care. The post elaboration values of all
implicitly defaulted outputs on any model that is compliant with IEEE Std 1164-1993 will be ‘U’,
since STD_logic’left is ‘U’. When this is the case, the WAVES data set effectively states that it
does not care that the model may have uninitialized outputs at the beginning of the simulation. This

is consistent with the way that the model will be tested.

The dont_care logic value is grouped separately from the drive logic values, since it makes little
sense to drive the model with a “don’t care.” Typically, when we truly don’t care, the model is
driven with either a ‘1’ or a ‘0’, not a *->. In fact, when a resolved signal is driven with °-’, the
standard logic (1164) resolution function generates an ‘X’. Therefore, the function of the
dont_care logic value is for stating that we do not care what the actual output of the model is at a
given time. This function differs from the sense logic values in that each sense logic value

indicates the value that we expect on a given model output.

The drive logic values occur on the waveform whenever a signal generated by the WAVES data
set represents stimulus to be “driven” on an input of the model. The sense logic values occur on
the waveform whenever a signal generated by the WAVES data set represents the expected
response of the model. This “dual” logic value system allows WAVES to represent the direction of

the signals that make up the waveform and is necessary information for verification.

The code for the WAVES_1164_Logic_Value package is given in Appendix Al.2. The package
body consists only of the implementation of the value_dictionary function. This function is
used to document the meaning of each element enumerated in the logic value type declaration with
regard to state, strength, direction, and relevance. This function is not used by VHDL when
simulating a WAVES data set. The only purpose of the value_dictionary function is to
document the semantics of the logic values. The definition of the state and strength values
associated with each logic value are derived from the IEEE Std 1164-1993 definitions.

10

CHAPTER 3: WAVES FRAME SET FORMATS

3.1 INTRODUCTION

In order to verify the functionality and performance of a digital design, an analysis system must
supply a set of input signals and know the expected outputs which will come from the unit and
know when the outputs are expected to come (in order to flag any errors). This analysis system
may simply be a VHDL simulator used for design verification or a complex automated test system
used for electrical characterization. This chapter describes the WAVES packages that define a set
of basic waveform formats (shapes) that may be used to construct complete, complex waveform
descriptions for all the input and output signals for a given unit under test (UUT). These packages
provide a library of reusable waveform shapes for WAVES users when developing VHDL models
that are compliant with the WAVES_1164_JLogic_Value package described in Chapter 2. This
WAVES package provides the basic building blocks for constructing UUT waveforms. The
waveform package WAVES_1164_FRAMES is included in Appendix 2.

3.2 TERMINOLOGY

A waveform is comprised of three basic elements: pattern data (the truth table data), format (the
waveform shape), and timing (the edge transition points). These three elements combine to create
the waveforms for data input to the UUT (the drive data) and the data expected on the output of
the UUT (the expect or compare data).

The pattern data refers to the legal pin codes that are valid in a WAVES external file as defined in
Chapter 2. The pattern data ‘X’, ‘0°, ‘1°, ‘Z’, “W’, ‘L, ‘H’, or ‘-” occurs once for each WAVES
slice (which roughly corresponds to a tester cycle). By itself, the pattern data means nothing to
the UUT, because the data must be formatted. It is the job of the WAVES frame set descriptions to
supply the information necessary for the analysis system to properly “build” data sheet-like
waveforms. The pattern data is applied to the UUT in the chosen format(s) at the times specified in

order to create waveform(s) at the UUT pins.

11

The creation of a WAVES formatted signal is comprised of several WAVES elements that are built
up to define a static definition of the waveform shape and associated timing. This chapter
describes the WAVES_1164_FRAMES package developed to establish a basic set of waveform
shapes that are readily available to the user. In order to describe these waveforms, we must first

define some basic terminology.

The time segments associated with a waveform can be thought of as consecutive advancing slices
of a waveform. These segments of time are called WAVES slices and roughly correspond to test

system “cycles”. A tester cycle is one tester period and is measured from t0 (time zero) to t0 of

the next cycle (see Figure 3.2.1).

frame frame set array

t0 : t0 \ 10
L .

output FINNNNAN

slice 1 slice 2

Figure 3.2.1 Sample Input/Output Waveforms and WAVES Slices.

Typically, each individual waveform may have multiple edge transitions in one period or cycle.
This list of edge transitions (WAVES events) on an individual signal of the waveform within a
slice is defined as a frame. The set of frames for all possible legal pattern values (WAVES pin
codes) that can be used on a signal is called a frame set. The functions that are described in this
chapter are used to define and establish a common set of the waveform shapes (WAVES frame
seté). In Chapter 6 we will show how these waveform shapes are combined to create a frame set
array to describe the waveform signals on all the UUT inputs and outputs during a slice. For the

rest of this chapter we will refer to the pre-defined collection of waveform shapes or frame sets as

formats.

Drive formats are designated as the waveform shapes that are associated with a UUT input signal.
That is, what the signal does during the slice when the pin code is specified. This
WAVES_1164_FRAMES package contains a reasonable, generic set of drive formats for the 1164

12

logic values that may be used by anyone. The WAVES drive frame formats we have developed
are: non-return (NR), return high (RH), return low (RL), pulse high (PH), pulse high
skew (PHS), pulse low (PL), pulse low skew (PLS), and surround by complement
(SC). The WAVES_1164_FRAMES package contains a function which corresponds to each

format named (see section 3.4).

For expected data (output signals), two WAVES format functions were developed to supply the
analysis system with the information necessary to compare the actual unit under test output with the
expected output at a specified time. The compare is performed over a span of time by using a

window compare or a window skew compare function (see section 3.5).

The WAVES frames developed and described in this chapter provide great flexibility and may be
used to build very complex waveforms. The package specification that defines these frame sets is

shown in Listing 3.2.1.

LIBRARY waves_1164;

USE waves_1164.waves_1164_pin_codes.ALL;
USE waves_1164.waves_1164_logic_value.ALL;
USE waves_1l164.waves_interface.ALL;
PACKAGE waves_1164_frames IS

-- Declare functions that return Frame Sets.

FUNCTION non_return(tl : TIME) RETURN frame_set;

FUNCTION return_low(tl, t2 : TIME) RETURN frame_set;

FUNCTION return_high(tl1l, t2 : TIME) RETURN frame_set;

FUNCTION surround_complement(tl, t2 : TIME) RETURN frame_set;
FUNCTION pulse_low(tl, t2 : TIME) RETURN frame_set;

FUNCTION pulse_low _skew(t0, tl, t2 : TIME) RETURN frame_set;
FUNCTION pulse_high(t1, t2 : TIME) RETURN frame_set;

FUNCTION pulse_high skew(t0, tl, t2 : TIME) RETURN frame_set;
FUNCTION window(tl1, t2 : TIME) RETURN frame_set;

FUNCTION window_skew{ t0, tl1l, t2 : TIME) RETURN frame_set;

END waves_1164 frames;

Listing 3.2.1 WAVES_1164_frames package declaration.

13

3.3 PATTERN DATA DEPENDENCY

As mentioned before, usually, for each individual waveform signal there is just one pair of timing
edge transitions: the leading edge transition tl and the trailing edge transition t2. The formats
developed in this package conform to this convention. The waveform shapes are entirely
dependent upon the data values present in the pattern vectors. Data dependent formats always
present pattern data at least between the t1 and t2 markers. The format selected also describes the
logic level for the time from t2 until t1 of the next cycle (and in some cases the format selected

dictates the logic level from tO at the beginning of the cycle until the leading edge transition time
tl).

14

3.4 DRIVE FORMATS

3.4.1 ComrounND FORMATS

Non-Return (NR). Typical output from a simulation program is in NR format, which is the
simplest way to represent UUT behavior. The NR frame forces a pattern data transition at tl
(only), and continues driving data until the next t1, ignoring the subsequent t2 and t0. That is, at
t0, the drive level is whatever the data of the previous cycle had been. ‘At t1, it drives the data level
of the present cycle and remains at that level at least until t1 of the following cycle, ignoring both t2
and the subsequent t0. A sample waveform showing the NR format is shown in Figure 3.4.1.

The NR frame set definition is shown in Listing 3.4.1.

logic
high

logic
low

data=0 data=1
t2 t0 t1 2 t0

Figure 3.4.1 Non-Return Waveform.

FUNCTION non_return (

tl : TIME) RETURN frame_set IS

CONSTANT edge : event_time := etime(tl);

BEGIN
RETURN

new_frame_ set (
new_frame_set (
new_frame_set (
new_frame_set (
new_frame_set (
new_frame_ set (
new_frame_set (
new_frame_set (

END non_return;

Listing 3.4.1

'X', frame_event((drive_X, edge)
'0', frame_event((drive_0, edge)
'1', frame_event((drive_1, edge)
'Z', frame_event((drive_Z, edge)
'"W', frame_event((drive_W, edge)
'L', frame_event((drive_L, edge)
'H', frame_event((drive_H, edge)

t-', frame_event);

Non-Return Frame set declaration.

15

— e e e e e

e e e e e

+ o+ o+ o+ o+ 4+

Return High (RH). The RH frame drives the specified data level from tl to t2 and drives the
level high from t2 to the following t0. That is, the drive level is at the value that was present at the
end of the previous cycle from tO to tl, transitions at t1 to the valid data pattern level, and goes
high (or stays high depending on the pattern data value) at time t2. A sample waveform showing
the RH format is shown in Figure 3.4.2. The heavy dashed line represents the drive level present
due to the frame set definition and not from the pattern data shown at the top of the figure. The RH

frame set definition is shown in Listing 3.4.2.

logic
high

logic
low

Figure 3.4.2 Return High Waveform.

FUNCTION return_high(tl1, t2 : TIME) RETURN frame_set IS

CONSTANT edgel : event_time := etime(tl1);
CONSTANT edge2 : event_time := etime(t2);
BEGIN

ASSERT tl < t2

REPORT "Timing violation in Return_High frames." &
"The inequality: T1 < T2 Must hold."

SEVERITY FAILURE;

RETURN
new_frame_set('X', frame_elist(((drive_X, edgel),
(drive_1, edge2)))) +
new_frame_set('0', frame_elist(((drive_0, edgel),
(drive_1, edge2)))) +
new_frame_set('l', frame_event((drive_1l, edgel) Yy) o+
new_frame_set('Z', frame_elist(((drive_2%, edgel),
(drive_1, edge2)))) +
new_frame_set('W', frame_elist(((drive_wW, edgel),
(drive_1, edge2)))) +
new_frame_set('L', frame_elist(((drive_L, edgel),
(drive_1, edge2)))) +
new_frame_set('H', frame_elist(((drive_H, edgel),
(drive_1l, edge2)))) +
new_frame_set('-', frame_event((drive_1, edge2)));

END return_high;
Listing 3.4.2 Return High Frame set declaration.

16

Return Low (RL). The RL frame drives the specified data level from t1 to t2 and drives the
level low from t2 to the following t0. That is, the drive level is at the value that was present at the
end of the previous cycle from t0 to t1, transitions at t1 to the valid data pattern level, and goes low
(or stays low depending on the pattern data value) at time t2. A sample waveform showing the RL
format is shown in Figure 3.4.2. The heavy dashed line represents the drive level present due to
the frame set definition and not from the pattern data shown at the top of the figure. The RL frame

set definition is shown in Listing 3.4.3.

logic
high

logic
low I 1 I I

Figure 3.4.3 Return Low Waveform.

FUNCTION return_low(tl, t2 : TIME) RETURN frame_set IS

CONSTANT edgel : event_time := etime(t1);
CONSTANT edge2 : event_time := etime(t2);
BEGIN

ASSERT tl1 < t2

REPORT "Timing violation in Return_Low frames." &
"The inequality : Tl < T2 Must hold."

SEVERITY FAILURE;

RETURN
new_ frame_set('X', frame_elist(((drive_X, edgel),
(drive_0, edge2)))) +
new_ frame_set('0', frame_event((drive_0, edgel) Y)+
new_frame_set('l', frame_elist(((drive_1l, edgel),
(drive_0, edge2)))) +
new_ frame_set('Z', frame_elist(((drive_2Z, edgel),
(drive_0, edge2)))) +
new_frame_set('W', frame_elist(((drive_W, edgel),
(drive_0, edge2)))) +
new_ frame_set('L', frame_elist(((drive_L, edgel),
(drive_0, edge2)))) +
new_frame_set('H', frame_elist(((drive_H, edgel),
(drive_0, edge2)))) +
new _frame_set('-', frame_event((drive_0, edge2)));

END return_low;

Listing 3.4.3 Return Low Frame set declaration.

17

Surround by Complement (SC). The SC frame drives the complement of the pattern data
from t0 to t1 and from t2 to the following t0. That is, the drive level is at the complement of the
pattern data at the beginning of the cycle, transitions to the pattern data level at t1, and returns to the
complement at t2. Many test and analysis systems refer to this format as “Return to Complement”
even though surround-by-complement is a more accurate description. Note that when t2 is in a
subsequent cycle (slice), data returns to the complement of the pattern data of the new cycle (not
the complement of the data of the original cycle).). Also note that the SC format is only applicable
to data values of “1”, “0”, “H”, and “L”, for all other data values the drive levels are unchanged
from the previous cycle. A sample waveform showing the SC format is shown in Figure 3.4.4.
The heavy dashed line represents the drive level present due to the frame set definition and not

from the pattern data. The SC frame set definition is shown in Listing 3.4.4.

to u 12 0 1 2 to

|OgiC - .-
high

logic feannan
low

Figure 3.4.4 Surround by Complement Waveform.

18

FUNCTION surround_complement(tl, t2 : TIME) RETURN frame_set IS

CONSTANT edgel : event_time
CONSTANT edgel : event_time
CONSTANT edge2 : event_time

etime(0 ns);
etime(tl1);
etime(t2);

BEGIN
ASSERT tl1 < t2
REPORT "Timing violation in Surround_Complement frames. " &

"The inequality: T1 < T2 Must hold."
SEVERITY FAILURE;

RETURN
new_frame_set('X', frame_event((drive_X, edgel) y)+
new_ frame_set('0', frame_elist(((drive_l, edge0),
: (drive_0, edgel),
(drive_1, edge2)))) +
new_frame_set('l', frame_elist(((drive_0, edge0},
(drive_1, edgel),
(drive_0, edge2)))) +
new_frame_set('Z', frame_event((drive_Z, edgel) Y) o+
new_frame_set('W', frame_event((drive_W, edgel) Y) o+
new_frame_set('L', frame_elist(((drive_H, edge0)},

(drive_1l, edgel),
(drive_H, edge2)))) +
new_ frame_set('H', frame_elist(((drive_L, edge0),
(drive_h, edgel),
(drive_L, edge2)))) +
new_frame_set('-', frame_event };
END surround_complement;

Listing 3.4.4 Surround by Complement Frame set declaration.

19

3.4.2 PULSE FORMATS

Pulse formats drive a fixed waveform to the unit under test which are useful for supplying clock
signals to the UUT. There are two pulse formats; Pulse Low and Pulse High. In addition, these
frame set formats have two separate instantiations. The first instantiation (Pulse_Low and
Pulse_High) allow for data pulses only within one WAVES slice (t0 is always set to O ns and tl
and t2 occur in the same slice). The second instantiation (Pulse_Low_Skew and
Pulse_High_Skew) allows the data pulse to be present across WAVES slice boundaries (t0 does
not have to be at 0 ns and t2 is not in the same slice as t1 which introduces the concept of t0’ as

shown in Figure 3.4.6 and 3.4.8 below). The following descriptions and examples will attempt to

clarify this concept.

Pulse Low/Pulse Low Skew (PL/PLS). If the vector pattern data contains either an “L” or a
“0” this format will drive a high level at tO (or t0), drive to a low level on the first edge (t1), then
drive a high level at the second edge (t2) until the end of the cycle. That is, drive a high level at t0,
transition high-to-low at t1 and low-to-high at t2. Note that for the PLS format the entire
waveform is shifted into the next cycle by an amount depicted by t0’, so that t2 occurs in a
subsequent slice (cycle). The signal will stay high for the entire cycle for vector pattern data values
of ‘1’ and ‘H’, and the signal remains at the previous cycle value for all other data formats.
Sample waveforms showing the PL format are shown in Figure 3.4.5 and the PLS format in
Figure 3.4.6. The PL frame set definition is shown in Listing 3.4.5 and the PLS frame set

definition is shown in Listing 3.4.6.

20

to

logic
high

logic
low

12 t0 t1 2 to

Figure 3.4.5 Pulse Low Waveform.

FUNCTION pulse_low(

CONSTANT edge0
CONSTANT edgel
CONSTANT edge?2

BEGIN

ASSERT tl1l < t2

tl, t2 : TIME) RETURN frame_set IS

event_time := etime(0 ns);

event_time
event_time

etime(tl1);
etime(t2);

REPORT "Timing violation in Pulse_lLow frames." &
"The inequality: T1 < T2 Must hold."

SEVERITY FAILURE;

RETURN
new_frame_set (
new_frame_set (

new_frame_set (
new_frame_set (
new_frame_ set (
new_frame_ set (

new_frame_set (
new_frame_set (
END pulse_low;

Listing 3.4.5

'X', frame_event) +

'0', frame_elist(((drive_1, edge0),
(drive_0, edgel),
(drive_1, edge2))

'l', frame_event((drive_1, edge0)
'Z', frame_event) +
‘W', frame_event) +

drive_L, edgel),

drive_H, edgel))
'H', frame_event((drive_H, edge0)
'-', frame_event);

'L', frame_elist(((drive_H, edgel),
(
(

Pulse Low Frame set declaration.

21

)
)

)
)

)
)

)
)

+ 4

+ o+

logic
high

logic
low

Figure 3.4.6 Pulse Low Skew Waveform.

FUNCTION pulse_low_skew(t0, tl, t2 : TIME) RETURN frame_set IS

CONSTANT edge0 : event_time := etime(t0);

CONSTANT edgel : event_time := etime(tl);

CONSTANT edge2 : event_time := etime(t2);
BEGIN

ASSERT t0 < t1 AND tl1 < t2

REPORT "Timing violation in Pulse_Low frames." &
"The inequality: TO < Tl < T2 Must hold.™

SEVERITY FAILURE;

RETURN

new_frame set('X', frame_event) +

new_frame_set('0', frame_elist(((drive_1, edgel),
(drive_0, edgel),
(drive_1, edge2)))) +

new_frame_set({ 'l', frame_event((drive_1, edge0)))Y o+

new_frame_set('zZ', frame_event) +

new_frame_set('W', frame_event) +

new_frame_set('L', frame_elist(((drive_H, edgel),
(drive_L, edgel),
(drive_H, edge2)))) +

new_frame_set('H', frame_event((drive_H, edge0) Y) o+

new_frame_set('-', frame_event });

END pulse_low_skew;

Listing 3.4.6 Pulse Low Skew Frame set declaration.

Pulse High/Pulse High Skew (PH/PHS). If the vector pattern data contains either an “H” or
a “1” this format will drive a low level at tO (or t0’), drive to a high level on the first edge (t1), then
drive a low level at the second edge (t2). That is, drive a low level at t0, transition low-to-high at
t1 and high-to-low at t2. Note that (like the PLS format described previously) for the PHS format
the entire waveform is shifted into the next cycle by an amount depicted by t0’, so t2 occurs in a

22

subsequent slice (cycle). The signal will stay low for the entire cycle for vector pattern data values
of “0” and “L”, and the signal remains at the previous cycle value for all other data formats.
Sample waveforms showing the PH format are shown in Figure 3.4.7 and the PHS format in
Figure 3.4.8. The PH frame set definition is shown in Listing 3.4.7 and the PHS frame set
definition is shown in Listing 3.4.8.

data=H data=1
t0 t1 t2 (0] t1 t2 t0
1 1 I 1
logic
high
logic
low

Figure 3.4.7 Pulse High Waveform.

FUNCTION pulse_high(t1, t2 : TIME) RETURN frame_set IS

CONSTANT edge0 : event_time := etime(0 ns);

CONSTANT edgel : event_time := etime(tl);

CONSTANT edge2 : event_time := etime(t2);
BEGIN

ASSERT tl1l < t2

REPORT "Timing violation in Pulse_High frames." &
"The inequality: T1 < T2 Must hold."

SEVERITY FAILURE;

RETURN

new_frame_set('X', frame_event) +

new_frame_set('0', frame_event((drive_0, edgel)))+

new_frame_set('l', frame_elist(((drive_0, edgel),
(drive_1, edgel),
(drive_0, edge2)))) +

new_frame_set('Z', frame_event) +

new_frame_set('W', frame_event) +

new_frame_set('L', frame_event((drive_L, edgel)))+

new_frame_set('H', frame_elist(((drive_L, edge0),
(drive_H, edgel),
(drive_L, edge2)))) +

new_frame_set('-', frame_event);

END pulse_high;

Listing 3.4.7 Pulse High Frame set declaration (first instantiation).

23

data=H data=1

logic
high

logic
low

Figure 3.4.8 Pulse High Skew Waveform.

FUNCTION pulse_high_skew(t0, tl1l, t2 : TIME) RETURN frame_set IS

CONSTANT edge0 : event_time := etime(t0);
CONSTANT edgel : event_time etime(t1 ;
CONSTANT edge2 : event_time etime(t2);

~—

il

BEGIN
ASSERT t0 < tl AND t1 < t2
REPORT "Timing viclation in Pulse_High frames." &
"The inequality: TO < Tl < T2 Must hold."
SEVERITY FAILURE;

RETURN

new_frame_set('X', frame_event) +

new_frame_set('0', frame_event((drive_0, edge0) Y)+

new_frame_set('l', frame_elist(((drive_0, edgel),
(drive_1, edgel),
(drive_0, edge2)))) +

new_frame_set('Z', frame_event) +

new_frame_set('W', frame_event) +

new_frame_set('L', frame_event((drive_L, edgel) y) o+

new_frame_set('H', frame_elist(((drive_L, edge0),
(drive_H, edgel),
(drive_L, edge2))))} +

new_frame_set('-', frame_event);

END pulse_high_skew;

Listing 3.4.8 Pulse High Frame set declaration (second instantiation).

24

3.5 EXPECTED OUTPUT FORMATS

The Window format starts the valid output data window at the t1 edge and ends the valid data
window at the subsequent t2 edge. That is, the output data is valid for the entire duration from t1
to t2. The output data is set to “don’t care” from t0 to t1 and from 2 to the subsequent t0. An
example waveform showing Window formats where the data expected on the output of the UUT is
low, high, and then midband is shown in Figure 3.5.1. The Window frame set definition is

shown in Listing 3.5.1.

The Window Skew format is similar to the Window format except that the t2 edge occurs in a
subsequent cycle (slice), delayed by the time t0’, much like the PHS and PLS formats discussed in
section 3.4.2. An example waveform showing Window Skew formats where the data expected on
the output of the UUT is low, high, and then midband is shown in Figure 3.5.2. The Window

Skew frame set definition is shown in Listing 3.5.2.

As stated previously, the window for valid data opens at time t1 and closes at time t2. Many
analysis systems also have the capability of sampling UUT output data at a single point in time
with what is referred to as an edge strobe. Using the window formats described above, it is
possible to mimic an edge strobe by setting the t1 and t2 times to be as close to one another as
possible, constrained only by the timing resolution of the analysis system. It should be noted that
this is not the same as using the test system’s hardware edge strobe capability, and the results will

not be as accurate.

25

data=0

to t1 2 t0 t1

1} data
1 valid

data=1

12

10 t1

Figure 3.5.1 Window Strobe Waveform.

FUNCTION window(tl, t2 TIME) RETURN frame_set IS
CONSTANT edge event_time := etime(0 ns);
CONSTANT edgel event_time := etime(tl1l);
CONSTANT edge2 event_time := etime(t2);

BEGIN
ASSERT tl < t2

REPORT "Timing violation in Window frames." &

"The inequality: T1 < T2 Must hold."

SEVERITY FAILURE;
RETURN

new_frame_set('X', frame_elist(((dont_care, edgel),
(sense_X, edgel),
(dont_care, edge2))
new_frame_set('0', frame_elist(((dont_care, edgel),
(sense_0, edgel),
(dont_care, edge2))
new_frame_set('l', frame_elist(((dont_care, edgel),
(sense_1, edgel),
(dont_care, edge2))
new_frame_set('Z', frame_elist(((dont_care, edgel),
(sense_2, edgel),
(dont_care, edge2))
new_frame_set('W', frame_elist(((dont_care, edgel),
(sense_W, edgel),
(dont_care, edge2))
new_frame_set('L', frame_elist(((dont_care, edgel),
(sense_1L, edgel),
(dont__care, edge2))
new_frame_set('H', frame_elist(((dont_care, edgel),
(sense_H, edgel),
(dont_care, edge2))
new_frame_set('-', frame_event((dont_care, edge0)

END window;

Listing 3.5.1

Window Frame set declaration.

26

)

)

)

data=0 data=1 data=Z

Figure 3.5.2 Window Skew Strobe Waveforms.

FUNCTION window_skew(t0O, tl, t2 : TIME) RETURN frame_set IS

CONSTANT edgel : event_time := etime(t0);
CONSTANT edgel : event_time := etime(tl);
CONSTANT edge2 : event_time := etime(t2);

BEGIN
ASSERT t0 < tl1 AND tl1 < t2
REPORT "Timing violation in Window frames." &
"The inequality: T0 < T1 < T2 Must hold."
SEVERITY FAILURE;
RETURN
new_frame_set('X', frame_elist(((dont_care, edge0),
(sense_X, edgel),
(dont_care, edge2)))
new_frame_set('0', frame_elist(((dont_care, edge0),
(sense_0, edgel),
(dont_care, edge2)))
new_frame_set('l', frame_elist(((dont_care, edgel),
(sense_1, edgel),
(dont_care, edge2)))
new_frame_set('Z', frame_elist(((dont_care, edge0),
(sense_2Z, edgel),
(dont_care, edge2)))
new_frame_set('W', frame_elist(((dont_care, edge0),
(sense_W, edgel),
(dont_care, edge2)))
new_frame_set('L', frame_elist(((dont_care, edge0),
(sense_L, edgel),
(dont_care, edge2)))
new_frame_set('H', frame_elist(({(dont_care, edge0),
(sense_H, edgel),
(dont_care, edge2)))
new_frame_set('-', frame_event((dont_care, edge0))
END window_skew;

Listing 3.5.2 Window Skew Frame set declaration.

27

CHAPTER 4: WAVES TESTBENCH UTILITIES
PACKAGE FOR IEEE STD 1164

4.1 INTRODUCTION

This chapter describes the VHDL package developed to support VHDL model simulation and
verification utilizing a WAVES data set. This package builds upon the WAVES STD 1164 multi-
logic package defined in Chapter 2 and provides the user with a seamless interface when utilizing
VHDL and WAVES together. This set of library functions was developed to provide for the
integration and tool support for using WAVES in a VHDL simulation environment.

These library functions provide for two different testbench aspects: first, to connect the WAVES
port list signals to the model and second, to evaluate the model response for compatibility to the
WAVES expected response. The premise of the functions provided in this library is that, when
utilized in conjunction with the testbench generation tool, all the detailed work in developing the
testbench is eliminated. The functions developed support a simple testbench with uni-directional

pins, as well as a complex bi-directional design entity.

A prototype automatic testbench generation tool has also been developed based on these library
elements. The purpose of the tool is to provide a methodology which minimizes the work involved
by an individual in developing testbenches through the use of a common user library and a building
block approach. The user is not restricted by this methodology, which is meant to eliminate
repetitive work and reduce the learning cycle for WAVES. The tool provides the user with a
testbench that is automatically generated. The testbench not only applies the WAVES stimulus to

the model, but verifies the validity of the expected responses.

28

WAVES —» VHDL

DATASET Stimulus MODEL
TESTBENCH
—> MONITOR <
Expected COMPATIBLE Response
Response PROCESSES

Figure 4.1.1 Functionality.

As mentioned previously, the purpose of the testbench utilities is to aid a user in developing a
testbench for applying the WAVES stimulus and response to the models. Figure 4.1.1 illustrates
the conceptual view of the functionality of the testbench methodology using these packages. The
stimulus waveforms which are produced by the WAVES data set are applied to the VHDL model.
The model then produces its’ output response based on the stimulus presented. The testbench
contains a set of monitoring processes which verify the expected and actual response values by

ensuring that they conform to the timing as specified in the WAVES data set.

The WAVES_1164_UTILITIES contains the stim_1164, expect_1164, and bi_dir_1164
functions to provide translation between the internal WAVES logic values, as described in Chapter
2, and the TEEE Std 1164-1993 values in the users’ model. The package also contains an
overloaded function compatible which allows a user to check or verify if the predicted or
expected response is “compatible” with the actual results generated by the model (see section 4.3
for further discussion of the compatible function). In order to use this package, all of the VHDL
design units must be compliant with the IEEE standard logic package. Sections 4.2 and 4.3
describe all of the functions provided in the testbench utility package. Chapter 6 contains three
complete testbench usage examples, each illustrating a different aspect of the packages. The
package declarations that define the functions is shown in Listing 4.1.1. The complete
implementation of the WAVES_1164_UTILITIES package is included in Appendix 3.

29

PACKAGE waves_1164_utilities IS

FUNCTION stim_1164
RETURN STD_LOGIC;
FUNCTION stim 1164 (

port_element

port_list

system_waves_port)

system_waves_port_list)

RETURN STD_ULOGIC_VECTOR;

FUNCTION stim_1164 (

FUNCTION expect_ 1164
RETURN STD_ULOGIC;

FUNCTION expect_1164

port_list
port_element

port_list

system_waves_port_list)
system_waves_port)

system_waves_port_list)

RETURN STD_ULOGIC_VECTOR;

FUNCTION bi_dir_ 1164 (
RETURN STD_LOGIC;
FUNCTION bi_dir_ 1164/
RETURN STD_LOGIC_VECTOR;
FUNCTION compatible(actual:
expected
RETURN BOOLEAN;
FUNCTION compatible(actual:
expected
RETURN BOOLEAN;
FUNCTION compatible(actual:
expected

port_element

port_list

system_waves_port)
system_waves_port_list)

STD_LOGIC;
STD_ULOGIC)

STD_ULOGIC_VECTOR;
STD_ULOGIC_VECTOR)

STD_LOGIC_VECTOR;
STD_ULOGIC_VECTOR)

RETURN BOOLEAN;
END waves_1164_utilities;

Listing 4.1.1 WAVES_1164_UTILITIES Declarations Section.

4.2 WAVES TRANSLATION FUNCTIONS

When used in simulation, the WAVES data set generates waveforms based on the WAVES logic
values described in Chapter 2. These generated WAVES port values are not compatible with the
IEEE Std 1164-1993 logic values. Instead, the WAVES ports values generated during simulation
are integer values. Therefore, translations are required between the WAVES port values and the
models’ logic values. These WAVES integer values correspond to the position of the logic value
enumeration as defined in Chapter 2. The mapping between the enumerated logic and the integer

values generated on the WAVES port is shown in columns 1 and 2 of Table 4.2.1.

30

WAVES LOGIC Waves Port stim_1164 expect_1164 bi_dir_1164
VALUE Value Value Value Value
DONT_CARE 0 . . A
SENSE_X 1 X X VA
SENSE_0 2 ‘o ‘o A
SENSE_1 3 ‘r ‘1’ ‘z
SENSE_Z 4 A A VA
SENSE_W 5 ‘W ‘W’ VA
SENSE_L 6 ‘L ‘L VA
SENSE_H 7 ‘" ‘H A
DRIVE_X 8 X . X
DRIVE_0 9 ‘0 o ‘o
DRIVE_1 10 ‘1 2 ‘1’
DRIVE_Z 11 A 7 Z
DRIVE_W 12 ‘W . ‘W’
DRIVE_L 13 ‘T < ‘L
DRIVE_H 14 ‘H £ ‘H

Table 4.2.1 STIM_1164 Mappings.

The three overloaded functions stim_1164, bi_dir_1164, and expect_1164 provide for
translation of the WAVES port values into the IEEE Std 1164-1993 logic values used in a model.
Table 4.2.1 shows the mapping values and the results that will be generated by the associated
translation function. Figure 4.2.1 is an illustration of a testbench that would be developed for
design analysis. The testbench is capable of supporting the analysis of any complex bit-level
design utilizing STD logic uni-directional or bi-directional pins. The illustration contains labeled
blocks that identify where the functions stim_1164, bi_dir_1164, and expect_1164 would
be utilized in supporting logic value translations within the testbench. The examples in Chapter 6
provide further description as to how these functions are used in the construction of the testbench.

Stimulus
WAVES |[——| STIM.1164 | g yppL
Data Set Model
1 B_DIR_1164
Bi-directional
Data
Testbench
EXPECT_1164 —————»| Monitor e
Expected Processes Response

Response

Y

Detected Errors

Figure 4.2.1 Bi-Directional Mappings.

31

The stim_1164 function converts a WAVES port integer into an 1164 std_logic value. The
translation function is overloaded to translate a single WAVES port integer into a std_logic bit or a
list of WAVES port integers into a std_logic_vector. The function supports both resolved and
unresolved IEEE Std 1164-1993 vector types. Columns 1 and 3 of Table 4.2.1 shows the
mapping relationships between the WAVES logic values as described in Chapter 2 and the standard
logic simulation code that is produced from the WAVES port integer value. This function, as used
in Figure 4.2.1, is used for all model signals that are declared as input only. This function

translates the WAVES port integer values into stimulus for input into the model.

The bi_dir_1164 function also converts a WAVES port integer into an 1164 std_logic value.
This function was developed to support the translation of inputs for bi-directional pins. This
function translates all of the drive values exactly the same as stim_1164, when the models’ port is
in the input mode. In order to prevent any conflict when the models’ port is in the out state, this
function strips off the sense values and replaces them with 'Z’, high impedance. This translation
of any sense values to high impedance allows the IEEE Std 1164-1993 bus resolution function to
resolve the state of the bi-directional signal generated by the model. The translation function is also
overloaded to translate a WAVES port integer into a std_logic bit or a list of WAVES port integers
into a std_logic_vector. Only resolved std_logic data types are required, since this function was
designed for bi-directional signals which require a resolved std_logic data type. Columns 1 and 5
of Table 4.2.1 shows the mapping relationships between the WAVES logic values as described in
Chapter 2 and the standard logic simulation code that is produced from the WAVES port integer

value.

The expect_1164 function also converts a single WAVES port integer into an 1164 std_logic
value. The difference between expect_1164 and stim_1164 is that the function expect_1164
defines an expected or predicted value of a models’ output. This generated signal is the definition
of a predicted value which verifies conformance of the models’ output. Therefore, for output pins,
the expect_1164 functions the same as stim_1164, except the logic value represents the expected
response of the model. However, for bi-directional pins, the expect_1164 function strips off the
driven values and replaces them with '-', dont_care. This translation of drive values to dont_cares
allows the use of this function with any signal specified as OUT or INOUT. The translation
function is also overloaded to translate a single port integer into a std_logic bit or a list of WAVES
port integers into a std_logic_vector. In this case, the resolved std_logic_vector type is not
required. Since this function was designed to translate the logic values for input into a VHDL
process, that process requires an unresolved source for explicit definition of the expected models’
output. The functionality of the VHDL monitor process that uses the translated value is described

32

in further detail in section 4.3. Columns 1 and 4 of Table 4.2.1 shows the mapping relationships
between the WAVES logic values as described in Chapter 2 and the standard logic simulation code
which is produced from the WAVES port integer value.

Table 4.2.1 shows the bit translations that will result from a given WAVES port integer and the
associated translated function. Column 1 shows the corresponding WAVES logic value as defined

in Chapter 2.

4.3 WAVES COMPATIBLE FUNCTIONS

The compatible function evaluates the state of two 1164 std_logic bits or std_logic_vectors for
compatibility. This function was designed for use in the testbench within a monitor process. This
allows the process to be sensitive to the actual signal value from the model and the expected signal
value from the WAVES data set. The process utilizing this function determines if the two signals
are “compatible” over the simulation period. A simple assertion statement can then be used to
notify the designer when the two signals are incompatible. In this function, the actual data value is
evaluated to determine if it is compatible to an expected or predicted value. By compatible, we
mean: “Is the actual value equivalent to or equal to the value specified by the expected value.” The
function uses a simple lookup table which contains all of the compatible definitions that were
developed. For a more detailed analysis, the complete table is listed in Appendix 3. The order of
relationship between the actual and expected values must be preserved, since they carry different
meanings. For example, if the actual data is '1' and the expected data was '-' (dont_care), the
result would be true. However, if actual data is '-' and the expected data was 'l', the result would
be false. The function is overloaded to support all of the data types that would be utilized by any
design compliant with IEEE Std 1164-1993.

33

CHAPTER 5: WAVES TESTBENCH TOOL

5.1 INTRODUCTION

As mentioned in the previous chapters, prototype tools were developed to aid a user in constructing
their WAVES data sets and generating the associated VHDL testbench. This chapter describes the
operation of the tools and walks a user through a simple example using a single flip-flop cell as the
model design. A brief explanation of the WAVES and VHDL source code generated by the tools

will also be given.

5.2 OVERVIEW

An X-Windows Graphical User Interface (GUI) was developed using TCL/TK [4] to simplify and
enhance the usability of the tool set designed. This GUI provides a single interface for the user to
interact with the tool set. For the rest of this chapter, the tool set will be referenced from the main
user interface and referred to as XTSTB. Figure 5.2.1 shows the complete VHDL library structure
and files supported under this environment. The original WAVES Standard Library is augmented
by the WAVES 1164 Library. Together, they establish a WAVES library environment of
precompiled functions as discussed in Chapters 2, 3, and 4. The files which the user must
develop are located in the library illustrated as “user library.” This chapter discusses the generation

of the files in this library.

The XTSTB tool set has several features that aid the user when using WAVES and VHDL
together. First, the tool generates WAVES packages that are utilized in defining the model specific
WAVES data set. The WAVES packages generated by the XTSTB tool are the UUT_pins
package, the waveform generator procedure template, and the header file template. Second, the
tool will perform a syntax check on the external pattern file that is utilized within the WAVES data
set. This syntax check verifies conformance to WAVES level 1 syntax and the std_logic pin codes
definitions. Finally, the tool will generate the VHDL testbench which wires the WAVES
waveform generator and the model together for design verification. The main input to the tool set
is the models’ entity declaration. The entity declaration is parsed by the tool set and used to define

34

the appropriate signals and data structures for creation of both the WAVES data set and the VHDL

testbench code.

WAVES 1164 Library WAVES Standard Library

Pin_codes

Logic_value

WAVES_System WAVES_Standard

Frame_sets Value_Dictionary

WAVES_1164_Utilities

User Library

Test_pins Header File

Test Bench VHDL Model

Pre-compiled WAVES

. Tool Generated WAVES

. Tool Generated VHDL External File

User Developed WAVES

User Developed VHDL

Figure 5.2.1 Final WAVES-VHDL Library Structure.

5.3 SITE SETUP

5.3.1 XTSTB SETUP

Before the XTSTB tool may be used, all required program files must be copied to a common

directory where all potential users have read and execute access. This directory must then be added

to the search path for execution. The XTSTB GUI interface requires that an environment variable

be created which points to the directory path where these files are located. The environment

variable command would look something like:

For Unix: — setevn WAVES_GEN /usr/dir_name/.../..

For Windows: — set WAVES_GEN=*/usr/dir_name/.../..”

35

5.3.2 WAVES LIBRARIES SETUP

Two libraries must be established within your VHDL environment to support this VHDL-WAVES
methodology. These two libraries are named WAVES_STD and WAVES_1164 as shown in
Figure 5.2.1. These libraries only need to be created once for any design environment. They
contain predefined VHDL and WAVES packages that are referenced by the automatically generated
WAVES and testbench files. The WAVES_STD library contains the VHDL implementation of the
WAVES standard data types and functions as described in the WAVES Language Reference
Manual. The WAVES_1164 library contains the predefined WAVES packages and the testbench
utilities packages presented in the earlier chapters of this report. The WAVES files and VHDL
testbench generated by the XTSTB tool will utilize these libraries when compiled.

The WAVES standard packages and the WAVES_1164 packages discussed earlier have been
merged into two source files to simplify distribution. The files are called “waves_std_lib.vhd” and
“waves_1164_lib.vhd” and must be analyzed into the WAVES_STD and WAVES_1 164 libraries.
The “waves_std_lib.vhd” file contains two packages, WAVES_System and WAVES_Standard.
The “waves_1164 lib.vhd” file contains five packages: WAVES_I 164_pin_codes,
WAVES_1164_logic_values, WAVES interface, WAVES 1164 frames, and

WAVES_1164_utilities.

To establish the site setup, you must first create two libraries within your VHDL environment.
These libraries must be named WAVES_STD and WAVES_1164. Then, compile the
“waves_std_lib.vhd” file into the WAVES_STD library, and compile the “waves_1164_lib.vhd”
file into the WAVES_1164 library. Now you will be able to compile the tool-generated WAVES

files and the testbench into a working library for use during simulation.

5.4 D Frip-FLop EXAMPLE WALK THROUGH
The remainder of this chapter will discuss the application of the XTSTB tool set on a D flip-flop.

The discussion walks a potential user through the XTSTB tool set process and the WAVES_1164
packages on a step by step basis for the D flip-flop.

36

5.4.1 CREATE WORKING LIBRARY

The VHDL code for the D flip-flop is shown in Listing 5.4.1 and is contained in a file named
“d_flip_flop.vhd.” The first step is to create a work library within your VHDL environment
and compile the “d_f1lip_flop.vhd” file into that work library.

-~ behavioral model

-~ Positive edge triggered D Flip Flop

library ieee;

use ieee.std _logic_1164.all;

entity d_flip_flop is

port (clock : in std_logic

D : in std_logic
Q : out std_logic
Q_bar : out std_logic

end d_flip_flop ;

architecture behavioral of d_flip_£flop is

begin
main : process (clock)
begin
if clock = '1' then
Q <= D ;
Q_bar <= not(D) ;
else
null;
end if;

end process;
end behavioral;

Listing 5.4.1 VHDL D-flip-flop Model.

To perform a simulation of the D flip-flop, the WAVES data set must also be created.

7
’
12

);

37

5.4.2 WAVES DATA SET CREATION

To create the WAVES data set, the XTSTB interface tool must be started. After the environment
variable WAVES_GEN is defined and the directory has been correctly set up, as described in
section 5.3, the user simply types “xtstb”. The program will display the window shown in Figure
5.4.1. If the WAVES_GEN environment variable is not pointing to the tool directory or the
program files are missing, the tool will display an error message requesting the user to correct the

WAVES_GEN variable.

Figure 5.4.1 Initial XTSTB Screen.

Once invoked and active, the user can move the mouse over the continue button and depress the
left mouse button. This will bring up the main screen shown in Figure 5.4.2. The user also has

the option of quitting the XTSTB tool at this point if desired.

The main display contains a set of selection buttons, checkboxes and entry fields. The buttons
each invoke a particular operation. The checkboxes are the optional controls that select the output

to be generated.

38

Figure 5.4.2 XTSTB Main Window

5.4.2.1 XTSTB ButrTtON USAGE

The Select button invokes one of two file selector boxes. These interface with the operating
system directory structure to select the VHDL file for the model entity or select a working directory
for subsequent file generation. The user should select the VHDL input file which contains the
VHDL models’ design entity, in this case “d_{lip_flop.vhd”.

The Generate button will invoke the tools to generate all of the entries selected by the checkbox
options. If an entry data field associated with an active checkbox is not entered correctly, a related

error message will be displayed. All files may be generated with a single depression of the

39

Generate button or they may be generated one at a time.

The Defaults button will insert default file names in the entry field for all the output files. If no

VHDL entity file has been entered, the default file names generated are prefixed with "waves_".
Otherwise, the VHDL models’ entity name will be used as the textual prefix value as shown in

Figure 5.4.2.
The Quit button simply terminates the XTSTB program.

The Help button invokes the help menu system which contains text descriptions similar to the

descriptions in this chapter.

5.4.2.2 XTSTB CHECKBOX USAGE

The Header File checkbox is used to generate the WAVES Header File. You should use this
option and generate the header file for configuration control to document the WAVES files. You
will need to edit the header file and add any additional information that may be helpful or relevant
for use later. This option requires that the user select and enter all of the waves data file name

entries.

The WAVES data set Test Pins checkbox is used to generate the UUT_pins package that
contains the WAVES TEST_PINS declaration. This is the first WAVES package that must be
analyzed into the working library. It defines the pin ordering associated with the columns in the
external file. This declaration is also used to size all of the waves_objects data structures to match
the number of pins in the entity. The WAVES UUT_pins package developed by the tool is

generated automatically from the models’ entity and requires no user modifications.

The WAVES standard package, WAVES_OBIJECTS, is created using the Waves_objects
checkbox. This is the second file which must be analyzed into the working library. This package
must be analyzed after the UUT_pins package to allow the compiler to size the waves_objects
based on the size of the test_pins declaration. This is the STD WAVES_OBJECTS package and
includes all 1164 context clauses plus a clause for the UUT_pins package. This selection was not
chosen in this example since this site has a copy of the waves_objects file already available. This
file does not change for any WAVES test set that is using the WAVES_1164 library.

40

The VHDL-WAVES testbench is created using the Testbench checkbox. The testbench
generated will need little, if any, modification. In this case, the VHDL entity and architecture were
located in the same file, therefore, the code generated was complete. You may sometimes need to
modify the configuration reference required for your model. The architecture information is
extracted, if possible, from the entity declaration if it is contained within the same file. As
mentioned above, for the flip flop, no modifications are required. The architecture name

“behavioral” was detected and added to the use entity statement.

The Debug checkbox option generates a testbench that includes a signal that can be very helpful in
debug. If you have a graphical waveform tool you should use the debug option, this signal flags
the existence of any failures. This option should probably be a default, since it is such a helpful

aid in debugging the model.

Finally, the WAVES data set Generator Package checkbox is used to generate the Waveform
Generator Procedure. The default procedure is set up to use a single frame set array with a

constant period or the period supplied from the external file.

The Time Sets checkbox selects a time set style waveform generator using a multiple WAVES
timing list. For a complex model where multiple combinations of timing and waveform formats
are required, this option would be selected. The numeric entry allowed in the entry field for this

option ranges from 1 to n, where n has been set to an arbitrary limit of 20.

5.4.2.3 SYNTAX CHECK OF EXTERNAL PATTERN FILE

Normally you will have to generate the external vector file or use a WAVES level two data set to
generate the stimulus. If you use an external file, you should check the syntax. The WAVES
internal Read_file_slice function was designed for execution of the WAVES external file and does
not gracefully handle all syntax errors. You should use the External file button selection to
check the syntax of the external file. The flip flop external vector file, “dff_vect.txt”, is
shown in Listing 5.4.2.

41

%clock data Q QBAR
1 1 1 0 : 20 ns;

[T - Y
o R o

~

e =
o oo

Listing 5.4.2 External Vector File.

Figure 5.4.3 shows the tool interface when performing the external file syntax check. Since the
external file pattern width should usually match the number of individual pins on the entity, the
syntax checking also verifies a sizing match between the model and the pattern specified. This
check was performed using the entity to define the number of pin elements on the model. The
select button was used to open the dialog boxes for file selection. Once the fields being utilized are
valid, the Execute Check button is used to invoke the syntax check. The radio buttons shown
on the bottom of Figure 5.4.3 are used to define the type of size check to perform.

Figure 5.4.3 Syntax Check Window.

5.4.3 FILES GENERATED

This section contains the outputs generated by the tool set. Any changes that were made to the

generated files are shown in boldface to highlight the changes made.

42

5.4.3.1 HEADER FILE

The header file template is generated to provide configuration information. The WAVES source
files and order of analysis are automatically captured. All the user has to do is add any site or
model specific textual information deemed relevant. The header file should be modified to show
any relevant information that may be useful for configuration and permanent reference. The flip-

flop header file, “d_f1ip_flop_header.txt”,is shown in Listing 5.4.3.

khkhkhhhhkhdhhkkdhkrkkhkhkdrkhhhtdhhhhhddrhkhdhkhhhkhhhhdrdbhkhk

—— *x***x%%%* Header File for Entity: d_flip_flop

PR R R R R R R R R R R X EEEE R R EE R R R R R RS S E SRR R AR]

dhkkhkhk A hkkhkkkrkhhhhbhkdhdhkkdhrkrhhkhkdkhkrhkhkdhrdhkdrdhhdhhdkx

-- Data Set Identification Information

TITLE A General Description
DEVICE_ID d_flip_flop

DATE Mon Mar 11 14:36:59 1995

ORIGIN Rome Lab Design Team

AUTHOR Company or Person

AUTHOR Maybe Multiple ... Companies or People

DATE Mon Mar 11 14:36:59 1995

ORIGIN Modified by Company X Design Team

AUTHOR wWho did it Company or Person

OTHER Any general comments you want

OTHER Built Using the WAVES-VHDL 1164 STD Libraries

-- Data Set Construction Information

WAVES_FILENAME d_flip_flop_pins.vhd WORK
library WAVES_1164;

use WAVES_1164.WAVES_1164_Pin_Codes.all;

use WAVES_ 1164 .WAVES_1164_Logic_Value.all;

use WAVES_1164 .WAVES_Interface.all;

use WORK.UUT_Test_pins.all;

WAVES_UNIT WAVES_OBJECTS WORK
WAVES_FILENAME d_flip_flop_wgen.vhd WORK
EXTERNAI_FILENAME dff_wvect.txt VECTORS
WAVEFORM_GENERATOR_PROCEDURE WORK.waves_d_flip_flop.waveform

Listing 5.4.3 WAVES D-Flip Flop Header File.

43

5.4.3.2 TEST PINS PACKAGE

The test pins package should never be modified, unless you want to change the pin column
references in the external file. The test pins package for our example,

“d_flip_flop_pins.vhd”,is shown in Listing 5.4.4.

-~ ***%%%%% Thig File Was Automatically Generated *******x

—- *x%x%xx% By The WAVES-VHDL Tool Set Ak ek

—-— *x*%kx***x Qenerated for Entity: d_flip_=flop

—— **x*k*xx** Thig File Was Generated on: Mon Mar 11 14:36:59 1995

PACKAGE uut_test_pins IS
TYPE test_pins IS (clock, D, Q, Q_bar);
END uut_test_pins;

Listing 5.4.4 WAVES D-Flip Flop Test Pins Package.

5.4.3.3 WAVEFORM GENERATOR PACKAGE

Although the waveform generator package generation is automated, you must still edit the file that
is produced. The package actually is a template and thus requires modification. The waveform
generator procedure template provides a basic structure based on the model that defined pin
groupings and signal association for waveform shapes. The tool makes a first cut at establishing
all required pin groupings and provides a template section for the user to supply the signal format
and timing values associated with the external pattern data. The waveform generator package for

the flip-flop example, “d_flip_flop_wgen.vhd”, is shown in Listing 5.4.5.

The formats pre-assigned and pin groupings created for the model may or may not need to be
adjusted. The tool scans for pin names looking for a clock signal named clock or clk so it can
assign a pulse format to them. For this model, the tool assigned all pin groups and formats

correctly.

The vector file reference generated on line 26 was based on the entity_ name with
"_vectors.txt" appended. Therefore, the file reference was changed to “dff_vect.txt”,

since this is the name of the vector file.

Since the XTSTB tool is unable to predict the time values for the waveform edge placements

44

required for a model, a reasonable limitation, you will always have to enter the waveform timing.

Default entries are specified only as: ns. The values you choose may be entered directly, such as:

10 ns, or they may be set by using constants such as: period, or they may be an equation such

as: period - 3 ns. For our flip flop example, the pulse_high format on line 33 is changed

with times of 10 ns and 20 ns. The non_return format on line 34 for the input pin is modified to

be prior to the 10 ns clock, so a value of 5 ns is used. For the expect window any time after 10 ns

would be valid, since the model contains no delays. A window time of 13 ns and 20 ns were

therefore used on line 35.

Ul W

o I

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27

28
29

—- *x*xx*%** Thig File Was Automatically Generated ***x*x*i*

—— *x*xx%x*x*x By The WAVES-VHDL Tool Set Kxxkkhkk

—— **x**xx*%x* Generated for Entity: d_flip_ flop

- xkxx%xx**x* Thig File Was Generated on: Mon Mar 11 14:36:59 1995

LIBRARY WAVES_STD;
USE WAVES_STD.WAVES_Standard.all;

USE STD.textio.all;

LIBRARY WAVES_1164;

USE WAVES_1164.waves_1164_frames.all;
USE WAVES_1164.waves_1164_pin_codes.all;
USE WAVES_ 1164 .waves_interface.all;

USE work.waves_objects.all;

USE work.uut_test_Pins.all;

PACKAGE WGP_d_flip flop is

PROCEDURE waveform(SIGNAL WPL : inout WAVES_PORT_LIST) ;
END WGP_d_flip_flop;

PACKAGE BODY WGP_d_flip_flop is

-~ This is the uut pin declaration pin and ordering
-- Remember you need to match the External file to This order

--clock, D, Q, Q_bar
PROCEDURE waveform(SIGNAL WPL : inout WAVES_PORT_LIST) is
FILE vector file : TEXT is in "dff_vect.txt";

VARIABLE vector : FILE_SLICE := NEW_FILE_SLICE;

-~ declare time constants to use or use time literals
__ constants or time literals can be used as the frame time values

45

30 CONSTANT outputs: pinset:= new_pinset ((Q, Q_bar));
31 CONSTANT inputs: pinset:= new_pinset ((D));
32 CONSTANT vector_FSA : Frame_set_array :=

33 New_frame_set_array(Pulse_high(10 ns, 20 ns), clock) +
34 New_frame_set_array (Non_return(5 ns), inputs) +

35 New_frame_set_array (window(13 ns, 20 ns), outputs);

36 VARIABLE timing : time_data := new_time_data(vector_£fsa);
37 BEGIN

38 loop

39 READ FILE_SLICE (vector_file, Vector); -- get first vector

40 exit when vector.end_of_file;

41 apply (wpl, vector.codes.all, Delay(vector.fs_time), timing);
42 -- or use internal slice time format as below

43 -- apply (wpl, vector.codes.all, Delay(ns), timing);

44 end loop;

45 END waveform;

46 END WGP_d_flip_flop;

Listing 5.4.5 WAVES Waveform Generator Package.

5.4.3.4 WAVES-VHDL TESTBENCH

The testbench generated for this example, “d_flip_flop_tstbench.vhd”, did not require

any modifications as discussed in section 5.4.2.2. It is shown in Listing 5.4.6.

—— *x**x%kx* Thig File Was Automatically Generated *****x**x%

—- *%**x*** By The WAVES-VHDL Tool Set AR

—— ****xkk**x Generated for Entity: d_flip_flop

—— ****x%k%% Thig File Was Generated on: Mon Mar 11 14:37:02 1995

LIBRARY ileece;
USE ieee.std_logic_1164.ALL;

LIBRARY waves_1164;
USE waves_1164 .WAVES_1164_utilities.all;

USE WORK.UUT_test_pins.all;
USE work.waves_objects.all;

USE work.WGP_d_flip flop.all;

46

-- Include component libary references here
-- User Must Modify And ADD component libary references here
-- Include component libary references here

ENTITY test_bench IS
END test_bench;

ARCHITECTURE d_flip_flop_test OF test_bench IS

. AR R R R RS R SRR R R R R R R R R R R R R R R R R N T

__***********CONFIGURATION SPECIFICATION LE S EEE R EEEE R X TR

e R o o g I I R S T R e A (RN A I TR

COMPONENT d_flip_flop

PORT (clock : IN std_logic;
D : IN std_logic;
Q : OUT std_logic;
Q bar : OUT std_logic);

END COMPONENT;

-- Modify entity use statement
-- User Must Modify modify and declare correct
-- .. Architecture, Library, Component
-- Modify entity use statement
FOR ALL:d_flip_flop USE ENTITY work.d_flip_flop(behavioral);

m—kkhkkhkhkkkhkkdhhhhkhhhhhkhkh kA A kA A Ak k ko kkkkkkhkh kb hkkkkkrrhohkkk

-- stimulus signals for the waveforms mapped into UUT INPUTS
__**

SIGNAL WAV_STIM_clock :std_logic;
SIGNAL WAV_STIM D :std_logic;

——kkhkkhkhkkkhhkkdhkhhhkhhhkhkhhhhhhhhkdhkhkhhkkhkhkhkkhkdhkk ks dkddd

-- Expected signals used in monitoring the UUT OUTPUTS

——kkhkkhkkkkhkkhhkhhhkhhhhhkkhdhhhhhhkrhhkhkrhkhkhhk kA kA hhk ko kkkdk

SIGNAL FAIL_SIGNAL :std_logic;
SIGNAL WAV_EXPECT_Q :std_logic;
SIGNAL WAV_EXPECT_Q bar :std_logic;

—hkkkhkkhkhkhk kb khkhkhkhhhkhdh kb hkhhhhkdd bk dd kA rhkkh Ak kb rdhrdkkkkk k%

-—- UUT Output signals used In Monitoring ACTUAL Values

——kkkkkhkhkhhkkkkhkh Ak hkhkhhdhhhddhkhdrrhkdkhhhkrhhbhhhhkhrdrbdkhkkkkk

SIGNAL ACTUAL_Q :std_logic;
SIGNAL ACTUAL_Q bar :std_logic;

——kkhkhkkkkkhhhdkhdkhhkhhhk kb kb hkhkdh kA A Ak Ak hkkhkkhkkhkhhkhhhkhhhhi

-- Bi_directional signals used for stimulus signals mapped
-- into UUT INPUTS and also monitoring the UUT OUTPUTS

—mTkhkkhkhkkkhkhkhhkhkhhhkhkhhhkhhhhhhkhhrhkdkhhdbhhhhhkhbhhkdohkrkhhdhkhkkdkkkkkk

47

-- No Bidirectional Pins On UUT

L _kkhkhkkkhkkhkhkhkkhkrkkhhhkdxhkrhhdrhdhhdhrhhkhdhhhrhhhhhhkhbhhdbhhhhhhhdhx ik

-- WAVES signals OUTPUTing each slice of the waves port list

o kkkkhkhkhkhhkkhkhhkdhkhkhkhkd kb hrdhhhdhhhhhdhkhdhhrdrhhhkhdhhdbhdhhdhddhdhid

SIGNAL wpl : WAVES_port_list;

BEGIN

o kkkkhkhk kA Ak hkhdhkkhhkhk kb ddrdkhhkhrhkhkhhdhkhkdhrdrhhhhdhhbhhddhdhdrhdhik

-- process that generates the WAVES waveform
o kkkkkkkk Ak ok Ak kA hkhkk kA khkkhkkkhkhkdhhdhhhkhhhkkhdkkrxkhkdrddhrhhhhrhhhrktk

WAVES: waveform(wpl);

o kkkkkhkkkhkhkhkhhk kA kkkhkkhkhhhhdhhhhhhkhkhkhhkhddhkhkdddkhdhhdhhhrrdrhdrhkhxx

-- processes that convert the WPL values to 1164 Logic Values
__***

WAV_STIM clock <= STIM_ 1164 (wpl.wpl{ 1));
WAV_STIM D <= STIM_ 1164 (wpl.wpl(2));
WAV_EXPECT_Q <= EXPECT_1164 (wpl.wpl(3 });
WAV_EXPECT_Q_ bar <= EXPECT_ 1164 (wpl.wpl(4));

B L R R R R R R EE R EE R R R R LR ERER RS R R R SRR

-- UUT Port Map - Name Symantics Denote Usage
_kkkkkkkhkhkkrkkkhkkkkhkhkkhkkhkkhkhhhrrhdhrrxhrhhhhhdk

ul: d_flip_flop

PORT MAP (
clock => WAV_STIM clock,
D => WAV_STIM_ D,
Q => ACTUAL_Q,
Q _bar => ACTUAL_Q bar);

B R L R R R R R s X R EE R R R SRR LR R EREEEE SRR EEEEE R SRR SRR

-- Monitor Processes To Verify The UUT Operational Response
R R R R R R R R R R R E R R EE R EE R R R R R R R R R R R R R R S S

Monitor_Q:
PROCESS (ACTUAL_Q, WAV_expect_Q)

BEGIN
assert (Compatible (actual => ACTUAL_Q,
expected => WAV_expect_Q))

report "Error on Q output" severity WARNING;

IF (Compatible (ACTUAL_OQ, WAV_expect_Q)) THEN
FATL_SIGNAL <='L'; ELSE FAIL_SIGNAL <='l";

48

END IF;
END PROCESS;

Monitor_Q bar:
PROCESS (ACTUAL_Q bar, WAV_expect_Q_bar)
BEGIN
assert (Compatible (actual => ACTUAL_Q bar,
expected => WAV_expect_Q_bar))
report "Error on Q_bar output" severity WARNING;

IF (Compatible (ACTUAL_Q bar, WAV_expect_Q_bar)) THEN
FAIL_SIGNAL <='L'; ELSE FAIL_SIGNAL <='1"';
END IF;

END PROCESS;

END d_flip_flop_test;

Listing 5.4.6 WAVES-VHDL Testbench.

5.4.4 ANALYZE AND SIMULATE WAVES AND VHDL PACKAGES

Once all of the files are generated and modified, the packages may be analyzed and simulated. You
would analyze the WAVES data set into the working library created for this model by doing the

following:

1. Analyze d_flip_flop_pins.vhd into library WORK.

2. Analyze WAVES_OBJECTS into library WORK.

3. Analyze d_flip_flop_wgen.vhd into library WORK.

4. Analyze d_flip_flop_tstbench.vhd into library WORK.

Now you are ready to simulate the flip flop testbench. More detailed model examples are

introduced in Chapter 6. Complete listings of these examples are given in the appendices.

49

CHAPTER 6: EXAMPLES

6.1 INTRODUCTION

This chapter provides three examples to demonstrate the usage of the testbench tools. The first
example, an 8-bit parity generator/checker, demonstrates basic usage of the testbench tool. The
second example, an 8-bit synchronous up/down counter, demonstrates the testbench tool usage on
a model that uses standard logic vectors. The final example, an 8-bit universal shift/storage
register, demonstrates testbench tool usage on a bi-directional /O model. The examples were
successfully simulated using three different VHDL simulators on two different hardware
platforms, thus also demonstrating the portability of VHDL and WAVES.

6.2 EXAMPLE 1: 54/74180: 8 - BIT PARITY GENERATOR/CHECKER

This example demonstrates usage of the testbench tool for generating a VHDL/WAVES testbench
with a single output monitor process. The external file consists only of pin codes. All timing is
performed in the WAVES generator. This example was generated using the command line

interface to the tool set. The individual commands used to invoke the tools are specified.

6.2.1 DEVICE SPECIFICATIONS

This parity checker was modeled after the 54/74180 series taken from the Fairchild TTL Data Book
printed in December 1978. The ‘180 is a monolithic 8-bit parity checker/generator which features
control inputs and even/odd outputs to enhance operation in either odd or even parity applications.
Cascading these circuits allows unlimited word length expansion. A typical application would be
to generate and check parity on data being transmitted from one register to another. It is a 14 pin
device with 8 data inputs (I through I7), 2 control inputs (Odd input and Even Input) and 2

outputs (Odd parity Output and Even Parity Output). Table 6.1.1 lists the pin numbers, pin name
and a short description of each pin. Table 6.1.2 is the truth table for the device.

50

Pin Number Pin Name Description
1 I6 Data Input 6
2 I7 Data Input 7
3 H Even Input
4 0] 0Odd Input
5 SE Even Parity Output
6 SO Odd Parity Output
7 GND Ground
8 I0 Data Input O
9 11 Data Input 1
10 2 Data Input 2
11 I3 Data Input 3
12 I4 Data Input 4
13 I5 Data Input 5
14 Vce Supply Voltage

Table 6.1.1 8-Bit Parity Checker/Generator Pin Labels.

Inputs Qutputs
Parity Even Even
Even
Odd
Even
Odd
X
X

BT T T
oo e e R
Nl Rl

e |

Table 6.1.2 8-Bit Parity Checker/Generator Truth Table.

6.2.2 TooL USAGE EXPLANATION

As explained in previous chapters, once the entity architecture is completed, the necessary WAVES
files needed to test are the pins file, header file, objects file, generator file, testbench file and the
vector file. The process by which these files are generated for this example are discussed below.

First, the testbench tool is invoked by:

wfgen -p pg_e_a.vhd > pg pins.vhd
This will automatically generate the necessary pins file.

Second, the tool is invoked by:

wfgen -h -p:pg pins.vhd -g pg_gen pg_e_a.vhd > pg_head.vhd
This will produce the header file. This file may now be edited for any additional information.

51

Third, the tool is invoked by:
wfgen -o pg_e_a.vhd > pg_objects.vhd
This will automatically generate the necessary WAVES object file.

Fourth, the tool is invoked by:

wfgen -g pg_e_a.vhd > pg_gen.vhd
This will produce the WAVES waveform generator package. A portion of this file is shown in

Listing 6.2.1 below.

FILE vector_file : TEXT IS IN "pg_e_a_vectors.txt";

CONSTANT vector_fsa : frame_set_array :=

new_frame set_array(pulse_high(ns, ns), a_clock) +
new_frame set_array(non_return(ns), inputs) +
new_frame_set_array(window(ns, ns), outputs);

Listing 6.2.1 Unedited waveform generator frame set array declaration.

This file must now be edited. First, the vector file name is edited. Second, the timing information
must be supplied. Finally, since no clock exists for this model, this line may be commented out or

deleted, as shown below.

FILE vector_file : TEXT IS IN "vectors.txt";

CONSTANT vector_fsa : frame_set_array :=
new_frame_set_array(non_return(0 ns), inputs) +
new_frame_set_array(window(70 ns, 100 ns), outputs) ;

Listing 6.2.2 Edited waveform generator frame set array declaration.

Finally, the tool is invoked by:

wtsth -t pg e a.vhd > pg test.vhd
This will automatically generate the necessary testbench file.

52

A syntax check of the pattern file is performed by:

wextern -E:pg e a.vhd pg_e a_vectors.txt
The necessary WAVES files to test and simulate this model have now been written with minimal

effort by the user.

6.2.3 SIMULATION

All of the WAVES files are then compiled into the working directory and the simulation was then
performed. For this example, the Model Technology simulator running on a Pentium 100 based

PC running Win95 was used.

6.3 EXAMPLE 2: SN54/74A1.S8169: SYNCHRONOUS 8 - BiT UP/DOWN
BINARY COUNTER

This VHDL model is slightly more complex than the parity generator model in example 1, as it
contains IEEE 1164 Standard Logic Vectors as an input and an output. This is handled easily by
the testbench tool as seen in the testbench itself for the Up Down Counter (Appendix 6). The tool
creates actual and expected Standard Logic Vectors for the Q outputs and a WAVES Stimulus
Standard Logic Vector for the eight bit input. Additionally, internal signal assignment statements
are generated for converting the WAVES Port List (WPL) values to the 11¢ % Logic Values that will
be needed for stimulus and comparison of model responses. Finally, an 1164 Standard Logic

Vector Monitor process is created for monitoring the outputs from the VHDL model.

6.3.1 DEVICE SPECIFICATIONS

The Texas Instruments SN54ALS8169 - Synchronous 8-Bit Up/Down Binary Counter is a 24 pin
device with 8 data inputs (A through H), 8 data outputs (Qa through Qh), and 5 control inputs
(Load Bar, U/D Bar, ENT Bar, RCO Bar and ENP Bar). The device is easily cascadable for n-bit
synchronous applications and fully programmable (may be preset to any number between O and
255). A complete description of this part may be obtained from the Texas Instruments Data Book,
1987.

Table 6.2.1 lists the Up/Down Counter’s pin numbers, names and a short description of their
functionality. Table 6.2.2 is the truth table of this device (only four bits are shown to conserve

space).

53

Pin Number Pin Name Description

1 Load Bar Load Binary (Preset)

2 U/D Bar Count Up when high, Count Down when low
3 A Data Input A (LSB)

4 B Data Input B

5 C Data Input C

6 D Data Input D

7 E Data Input E

8 F Data Input F

9 G Data Input G

10 H Data Input H (MSB)
11 ENT Bar Enable Counting, also fed forward for ripple carry out
12 GND Ground

13 RCO Bar Ripple Carry Out

14 CLK Clock

15 Qh Result Output H (MSB)
16 Qg Result Output G

17 Qf Result Output F

18 Qe Result Output E

19 Qd Result Output D
20 Qc Result Output C
21 Qb Result Output B
22 Qa Result Output A (LSB)
23 ENP Bar Enable Counting
24 Vee Supply Voltage

Table 6.2.1

Synchronous 8-Bit Up/Down Binary Counter Pin Labels.

Operation Inputs at time t, Outputs at time ¢t
Load | Clock | ENP | ENT | LOAD | Al B] c[D|lUD [Q, | Q. | Q. | Q RCO
T L L L X[x{x[x] X |A|B|c|D]|Lifcount=15
H if count #15
Count Up T L L H X XI Xt X] H Previous count L if count =15
plus 1 H if count #15
Count T L L H X X| X| X| L Previous count L if count =15
Down minus 1 H if count #15
T H L H [xx[xx x No change
Inhibit T L H H [x]x]xx x No change L
T H H H x| x| x| x| x L

Table 6.2.2

Synchronous 8-Bit Up/Down Binary Counter Truth Table.

The external file used for testing the Up/Down Counter VHDL model consists of 6 different tests.
The first test simply loads in the value of zero and counts up to seventy nine, checking if the model
counts up. The second test loads in 250 and counts up through 255 to 16 to check if RCO_Bar
goes low at 255. The third test loads in 100 and counts down through 0 to 245, checking to see if
the model counts down and if RCO_bar goes low at 0 while counting down. The fourth test loads

54

in 0, counts up to 2, disables counting by resetting both ENT Bar and ENP_Bar, and then
resetting both again and counts back down through 0 to 253. Tests 5 and 6 are similar except that
they simply disable counting by resetting only ENT_Bar and the only ENP_Bar respectively.

6.3.2 TooL USAGE EXPLANATION

Refer to Appendix 6 for the complete file listings.

Changes were made to the testbench tool generated waveform generator procedure:
1) The external file name had to be changed to the proper name on line 37 from:

FILE vector_file : TEXT IS IN "eight_bit_sync_ud_cntr_vectors.txt";
to:

FILE vector_file : TEXT IS IN '"synctr_vectors.txt";

2) The in_pins constant, shown in Listing 6.3.1, was modified because ent_bar and enp_bar
have different timing than load_bar and up_down_bar. Therefore, a new constant named

enable_pins was created, shown in Listing 6.3.2:

CONSTANT in_pins: pinset:= new_pinset ((load_bar,up_down_bar,

ent_bar, enp_bar));

Listing 6.3.1 Unedited in_pins constant declaration.
to:
CONSTANT in_pins: pinset:= new_pinset((load_bar,up_down_bar));

CONSTANT enable_pins : pinset :=- new_pinset((ent_bar, enp_bar));
Listing 6.3.2 Edited in_pins constant declaration.
3) The code grouping beginning at line 62 shown in Listing 6.3.3, had to be modified to insert a

new frame array for the constant enable_pins. Also, the absolute timing for the clock, inputs

and outputs was added as shown in Lisitng 6.3.4:

55

CONSTANT vector_fsa : frame_set_array :=

new_frame_set_array(pulse_high(ns, ns), clk) +
new_frame_set_array(non_return(ns), inputs) +
new frame_set_array(window(ns, ns), outputs) ;

Listing 6.3.3 Unedited waveform generator frame set array declaration.

to:
CONSTANT vector_fsa : frame_set_array :=
new_frame_set_array(pulse_high(15 ns, 30 ns), clk) +
new frame_set_array(non_return (20 ns), enable_pins) +
new _frame_set_array{non_return(0 ns), inputs) +
new_frame_set_array (window(20 ns, 27 ns), outputs) ;

Listing 6.3.4 Edited waveform generator frame set array declaration.

6.3.3 SIMULATION

The Cadence Leapfrog simulator running on a Sun SPARC IPX running SunOS was used for this

model verification.

6.4 EXAMPLE 3: 54LS/741.S299: 8 - INPUT UNIVERSAL SHIFT/STORAGE
REGISTER

This VHDL model demonstrates how the testbench generation process is performed when the
model contains bi-directional pins. The testbench generation tool created the complementary
WAVES data files and the VHDL testbench. The generation tool created two time sets in the
WAVES waveform genérator file requiring that the external file specify which time set was to be
used. Two time sets were needed to specify one set of conditions when the bi-directional pins

were operating as input pins and the second time set to identify the output characteristics.

6.4.1 DEVICE SPECIFICATIONS

This register was modeled after the 54L.S/741.5299 series taken from the Fairchild TTL Data Book
printed in December of 1978. The 54LS/74L.5299 8-input universal shift/storage register with
common parallel input/output pins, is an 8-bit universal shift/storage register with 3-state outputs.
Four modes of operation are possible: hold(store), shift left, shift right, and load data. The parallel

load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins.

56

Separate outputs are provided for flip-flops Q0 and Q7 to allow easy cascading. A separate active
LOW Master Reset is used to reset the register. The VHDL model generated is a dataflow

description of the part.

Pin Number Model Name Pin Name Description
1 selection(0) SO Mode Selection Input 0
2 enable_out(0) NOT OE1 3-State Output Enable Input 1
3 enable_out(1) NOT OE2 3-State Output Enable Input 2
4 10(6) 106 Parallel Data Input/ 3-State Parallel Output 6
5 1I0(4) 104 Parallel Data Input/ 3-State Parallel Output 4
6 10(2) 102 Parallel Data Input/ 3-State Paralle! Output 2
7 10(0) 100 Parallel Data Input/ 3-State Parallel Output 0
8 OUT_0 Qo0 Serial Output 0
9 Master_Reset NOT MR Asynchronous Master Reset Input (Active LOW)
10 e GND Ground
11 Data_0 DSO Serial Data Input for Right Shift
12 Clock CP Clock
13 I0(1) 101 Parallel Data Input/ 3-State Parallel Output 1
14 10(3) 103 Parallel Data Input/ 3-State Parallel Output 3
15 I0(5) 105 Parallel Data Input/ 3-State Parallel Output 5
16 10(7) 107 Parallel Data Input/ 3-State Parallel Output 7
17 OuUT_7 Q7 Serial Output 7
18 Data_7 DS7 Serial Data Input for Left Shift
19 selection(1) S1 Mode Selection Input 1
20 e VCC SUPPLY VOLTAGE

Table 6.3.1 8-Input Universal Shift/Storage Register Pin Labels.

Table 6.3.1 lists the register’s pin numbers, model and pin names and a short description of each
pins’ functionality. The truth table for this device is shown in Table 6.3.2.

INPUTS RESPONSE

Asynchronous Reset: Q, - Q, = LOW

Paralle] Load: /O, — Q,
Shift Right: Ds, — Q,, Q, — Q,, etc.

Shift Left: Ds, = Q,, Q, = Q, etc.
Hold

e
oniile ol o= sl N
i =R K2
M- - — X Q

Table 6.3.2 8-Input Universal Shift/Storage Register Truth Table.

The type of operation to be performed is determined by the SO and S1 selection pins and shown in
Table 6.3.2. All flip-flop outputs are brought out through tri-state buffers to separate I/O pins that
also serve as data inputs in the parallel load mode. QO and Q7 are also brought out on other pins

for expansion in serial shifting of longer words. A LOW signal on the master reset pin overrides

57

the select and clock pulse inputs and resets the flip-flops. All other state changes are initiated by
the rising edge of the clock. Inputs can change when the clock is in either state provided that the
recommended setup and hold times, relative to the rising edge of the cock pulse, are observed. A
high signal on either of the output enable pins disables the tri-state buffers and puts the /O pins in
the high impedance state. In this condition, the shift, hold, load and reset operations can still
occur. The tri-state buffers are also disabled by high signals on both SO and S1 in preparation for

a parallel load operation.

The external file used for testing the 1.S299 tested all five of its operations; reset, shift right, shift
left, hold and load. The external file format, shown in Appendix A7.6, lists the conditions on the
pins (selection, output enable, clock, data serial 0, data serial 7, master reset, and the I/O pins,
from left to right) followed by the identifier for the proper time set. Time set one sets the I/O pins
to be compared (output mode) and time set two drives the /O as input. The first vector resets the
register, then six shift right operations are performed followed by five shift left operations. The
resulting output is then held for five cycles. The register is then loaded with data and the output
disabled with the loaded information shifted left. The I/O pins are tested for a tri-state condition
and the last operation enables the outputs and performs a final shift left operation.

6.4.2 TooL USAGE EXPLANATION

Appendix 7 contains a complete listing of all of the files, both tool generated and hand created, for
this model. All of the generated files were produced by the WAVES testbench generation tool as

described in Chapter 5.

The only changes which were required of the tool generated files were to the waveform generator

procedure. The two changes which were necessary to make are outlined below:

1) The external file name had to be changed to the proper name:

FILE vector_file : TEXT IS IN "shift_register_vectors.txt";
fo:
FILE vector_file : TEXT IS IN "vectors.txt";

2) The code grouping, which is shown in Listing 6.4.1, had to be modified in two ways. First,
for both frame set 1 and 2, a choice of the compare or drive format had to be made. This involves
uncommenting the appropriate line for each frame set. Second, the absolute timing for the clock,

58

inputs and outputs had to be added. The changed listing is shown in Lisitng 6.4.2.

-- Frame Set 1
(delay => delay (ns),
timing => new_time_data/(
new_frame_set_array(pulse_high(ns, ns), clock) +
-- gselect compare New_frame_set_array (Window(ns, ns), I0) +
-- or drive format) New_frame_ set_array (Non_return(ns), IO0) +
new_frame_set_array(non_return(ns), inputs) +
new_frame_set_array(window(ns, ns), outputs)

))

-- Frame Set 2

(delay => delay (ns),
timing => new_time_data(

new_frame_set_array(pulse_high(ns, ns), clock) +
-- select compare New_ frame_set_array (Window(ns, ns), IO) +
-- or drive format New_frame_set_array (Non_return(ns), IO) +
new_frame_ set_array(non_return(ns), inputs) +
new_frame_set_array(window(ns, ns), outputs)

)))
Listing 6.4.1 Unedited waveform generator frame set declaration.

to:

-—- Frame Set 1
(delay => delay (100 ns),
timing => new_time_data/(
new_frame_set_array(pulse_high(50 ns, 80 ns), clock) +
new_frame_set_array{(window(85 ns, 95 ns), io) +
-- or drive format New_frame_set_array (Non_return(ns), IO) +
new_frame_set_ array(non_return(5 ns), inputs) +
new_frame_set_array(window(85 ns, 55 ns), outputs)

YY),

-- Frame Set 2

{ delay => delay (100 ns),
timing => new_time_data (
new_frame_set_array(pulse_high(50 ns, 80 ns), clock) +
-- select compare New_frame_set_array (Window(ns, ns), I0) +
new_frame_set_array(non_return(5 ns), io) +
new_frame_set_array(non_return(5 ns), inputs) +
new_frame_set_array(window(85 ns, 95 ns), outputs)

)))

Listing 6.4.2 Edited waveform generator frame set declaration.

59

6.4.3 SIMULATION

This model was verified using the Synopsys simulator on a2 Sun SPARC IPX running SunOS.

60

REFERENCES

1. Tnstitute of Electrical and Electronics Engineers: IEEE Standard for Waveform and Vector
Exchange (WAVES). IEEE Std 1029.1-1992. September 28, 1992; The Institute of Electrical
and Electronics Engineers, Inc., 345 East 47th Street, New York, NY 10017-2394, USA. ISBN

1-55937-195-1.

2. Institute of Electrical and Electronics Engineers: IEEE Standard VHDL Language Reference
Manual. ANSIIEEE Std 1076-1993. June 4, 1994; The Institute of Electrical and Electronics
Engineers, Inc., 345 East 47th Street, New York, NY 10017-2394, USA. ISBN 1-55937-376-8.

3. Tnstitute of Electrical and Electronics Engineers: IEEE Standard Multivalue Logic System for
VHDL Model Interoperability (Std_logic_1164). IEEE Std 1164-1993. May 26, 1993; The
Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, NY 10017-
2394, USA. ISBN 1-55937-299-0.

4. Ousterhout, John K.: Tecl and the Tk Toolkit. Addison-Wesley Publishing Company; 1994.
ISBN 0-201-63337-X.

5. Flynn, C.J., Hall, F.G., Hanna, J.P,, Nassif, M.P., and Pronobis, M.T., “Top-Down Design
Through Test using VHDL and WAVES,” Proceedings 1995 International Conference on
Electronic Hardware Description Languages (ICEHDL), January 1995, pp. 21-25.

6. Flynn, C.J., Hall, F.G, Hanna, J.P., and Pronobis, M.T., “Using WAVES in a Top-Down
Design Methodology,” Proceedings VHDL International Users’ Forum, Fall Conference,
November 1994, pp.12.1-12.6.

7. Pronobis, M., Hillman, R. and Flynn, C., “Test Insertion Without Being a Test Expert,”
Proceedings VHDL International Users’ Forum, Fall Conference, October 1995, pp. 10.1-10.8.

61

APPENDIX 1: WAVES_1164 PACKAGES

Al.1 WAVES 1164 PIN_CODES PACKAGE

PACKAGE waves_1164_pin_codes IS)
CONSTANT pin_codes : STRING := "X01ZWLH-";
END waves_1164_pin_codes;

62

Al1.2 WAVES 1164 1.oGIC_VALUE PACKAGE

LIBRARY waves_std;

USE waves_std.waves_standard.ALL;
PACKAGE waves_1164_logic_value IS

TYPE logic_value IS
(

dont_care,
sense_x,
sense_0,
sense_1,
sense_z,
sense_w,
sense_1,
sense_h,
drive_x,
drive_0,
drive_1,
drive_z,
drive_w,
drive_1l,
drive_h);

FUNCTION value_dictionary(value

RETURN event_value;

END waves_1164_logic_value;

logic_value)

PACKAGE BODY waves_1164_logic_value IS

FUNCTION value_dictionary(value

logic_value)

RETURN event_value IS

BEGIN
CASE value IS
WHEN drive_x =>
RETURN state
strength
direction
WHEN drive_0 =>
RETURN state
strength
direction
WHEN drive_1 =>
RETURN state
strength
direction
WHEN drive_z =>
RETURN state
strength
direction
WHEN drive_w =>
RETURN state
strength
direction
WHEN drive_l =>
RETURN state
strength
direction
WHEN drive_h =>
RETURN state
strength
direction
WHEN sense_x =>
RETURN state
strength
direction
relevance

o

nnou

nn oo nn

unknown AND
drive AND
stimulus;

low AND
drive AND
gtimulus;

high AND
drive AND
stimulus;

midband AND
disconnected AND
gtimulus;

unknown AND
regsistive AND
stimulus;

low AND
resistive
stimulus;

high AND
registive
stimulus;

AND

unknown AND
drive AND
response AND
required;

63

WHEN sense_0 =>
RETURN state
strength
direction
relevance
WHEN sense_1 =>
RETURN state
strength
direction
relevance
WHEN sense_z =>
RETURN state
strength
direction
relevance
WHEN sense_w =>
RETURN state
strength
direction
relevance
WHEN sense_l =>
RETURN state
strength
direction
relevance
WHEN sense_h =>
RETURN state
strength
direction
relevance
WHEN dont_care =>

= low AND

drive AND
responge AND
required;

high AND
drive AND
response AND
required;

midband AND
disconnected AND
response AND
required;

unknown AND
resistive AND
response AND
required;

low AND
resistive AND
response AND
required;

high AND
resistive AND
response AND
required;

RETURN unspecified;
END CASE;
END value_dictionary;

END waves_1164_logic_value;

64

APPENDIX 2: WAVES_1164_FRAMES PACKAGE

LIBRARY waves_1164;

USE waves_1164.waves_1164_pin codes.ALL;
USE waves_1164.waves_1164_logic_value.ALL;
USE waves_1164.waves_interface.ALL;
PACKAGE waves_1164_frames IS

-- Declare functions that return Frame Sets.

FUNCTION non_xreturn(tl : TIME) RETURN frame_set;

FUNCTION return_low(tl, t2 : TIME) RETURN frame_set;

FUNCTION return_high(tl, t2 : TIME) RETURN frame_set;
FUNCTION surround complement(tl, t2 : TIME) RETURN frame_set;
FUNCTION pulsge_low(tl, t2 : TIME) RETURN frame_set;

FUNCTION pulse_low_skew(t0, til, t2 : TIME) RETURN frame_ set;
FUNCTION pulse_high(tl, t2 : TIME) RETURN frame_set;

FUNCTION pulse_high skew(t0, tl, t2 : TIME) RETURN frame_set;
FUNCTION window(tl, t2 : TIME) RETURN frame_ set;

FUNCTION window_skew(t0, tl, t2 : TIME) RETURN frame_set;

END waves_1164_frames;

PACKAGE BODY waves_1164_frames IS

-~ Frame Set function definitions.

FUNCTION non_return(tl : TIME) RETURN frame_set IS

CONSTANT edge : event_time := etime(tl1);
BEGIN
RETURN
new_frame_set('X', frame_event((drive_X, edge))) +
new_£frame_set('0', frame_event((drive_0, edge))) +
new_frame_set('l', frame_event((drive_1, edge))) +
new_frame_sget('Z', frame_event((drive_2Z, edge))) +
new_frame_set('W', frame_event((drive W, edge))) +
new_frame_set('L', frame_event((drive_L, edge))) +
new_frame_set('H', frame_event((drive_H, edge)))} +
new_frame_set('-', frame_event);
END non_return;
FUNCTION return low(tl, t2 : TIME) RETURN frame_set IS
CONSTANT edgel : event_time := etime(tl);
CONSTANT edge2 : event_time := etime(t2);
BEGIN
ASSERT t1 < t2
REPORT "Timing violation in Return_Low frames." &
"The inequality : T1 < T2 Must hold."
SEVERITY FAILURE;
RETURN
new_frame_set('X', frame_elist(((drive_X, edgel),
(drive_0, edge2)))) +
new_frame_set('0', frame_event((drive_0, edgel)))+
new_frame_set('l', frame_elist(((drive_1, edgel),
(drive_0, edge2)))) +
new_frame_set('Z', frame_elist(((drive_Z, edgel),
(drive_0, edge2)))) +
new_frame_set('W', frame_elist(((drive_w, edgel),
(drive_0, edge2))))} +
new_frame_set('L', frame_elist(((drive_L, edgel),
(drive_0, edge2)))}) +
new_frame_set('H', frame_elist(((drive_H, edgel),
(drive_0, edge2)))) +
new_frame_set('-', frame_event((drive_0, edge2)));

65

END return_low;

FUNCTION return_high(tl, t2 : TIME) RETURN frame_ set IS

CONSTANT edgel : event_time
CONSTANT edge2 : event_time

na

etime(tl1);
etime(t2);

BEGIN
ASSERT tl < t2
REPORT "Timing violation in Return_High frames." &
"The inequality: T1 < T2 Must hold."
SEVERITY FAILURE;

RETURN
new_frame_set('X', frame_elist(((drive_X, edgel),
(drive_1, edge2)))) +
new_frame_set('0', frame elist(((drive_0, edgel),
(drive_1, edge2)))) +
new_frame_set('l', frame event((drive_l, edgel) Y o) o+
new_frame_set('Z', frame_elist(((drive_2Z, edgel),
(drive_1, edge2)))) +
new_frame_set('W', frame_elist(((drive_W, edgel),
(drive_1, edge2)))) +
new_frame_set('L', frame_elist(((drive_L, edgel),
(drive_1, edge2)))) +
new frame_set('H', frame_elist(((drive_ H, edgel),
(drive_1, edge2}))))} +
new_frame_set('-', frame_event((drive_l, edge2)));

END return_high;

FUNCTION surround_complement(tl, t2 : TIME) RETURN frame_set IS

CONSTANT edge0 : event_time := etime(0 ns);
CONSTANT edgel : event_time := etime(tl1);
CONSTANT edge2 : event_time := etime(t2);

BEGIN
ASSERT tl < t2
REPORT "Timing violation in Surround_Complement frames. " &

“The inequality: T1 < T2 Must hold.®
SEVERITY FAILURE;

RETURN
new_ frame_set('X', frame_event((drive_X, edgel) Y) o+
new_frame_set('0', frame_elist(((drive_ 1, edge0), .

(
(_
(drive_1, edge2)
new_frame_set('l', frame_elist(((drive_0, edge0)
(drive_1, edgel)
(drive_0, edge2)
new frame_set('Z', frame_event((drive_Z, edgel)
new_frame_set('W', frame_event((drive W, edgel) Yy) o+
new_frame_set('L', frame_elist(((drive_H, edge0)
(drive_1l, edgel)
(drive_H, edge2)
new frame_set('H', frame_elist(({(drive_L, edge0)
(drive_h, edgel)
(drive_L, edge2))) o+
new_frame_set('-', frame_event);
END surround_complement;

FUNCTION pulse_low(t1, t2 : TIME) RETURN frame_set IS
etime(0 ns);

etime(tl1);
etime(t2);

CONSTANT edgel : event_time
CONSTANT edgel : event_time
CONSTANT edge2 : event_time

BEGIN
ASSERT tl1l < t2
REPORT "Timing violation in Pulse_Low frames." &

"The inequality: Tl < T2 Must hold."
SEVERITY FAILURE;

RETURN

new_frame_set('X', frame_event) +

new_frame_set('0', frame_elist(((drive_1, edgel),
(drive_0, edgel)},
(drive_1, edge2)))) +

new_frame_set('l', frame_event((drive_l, edge0) Yy) o+

new_frame_sget('Z', frame_event) +

new_frame_set('W', frame_event) +

66

new_frame_set('L', frame_elist(((drive_H, edgel),

(drive_L, edgel),

(drive_H, edge2)))) +
new_frame_set('H', frame_event((drive_H, edge0) Y)Y o+
new_frame_set('-', frame_event);

END pulse_low;

FUNCTION pulse_low_skew(t0, tl, t2 TIME) RETURN frame_set IS
CONSTANT edge0 event_time := etime(t0);
CONSTANT edgel event_time :=- etime(tl1l);
CONSTANT edge2 event_time := etime(t2);

BEGIN
ASSERT t0 < tl1l AND tl1 < t2
REPORT

"Timing violation in Pulse_lLow frames."

&

“The inequality: T0 < Tl < T2 Must hold."

SEVERITY FAILURE;
RETURN

new_frame_sget('X', frame_event) +
new_frame_set('0', frame_elist(((drive_1,
(drive_0,
(drive_1,
new_frame_set('l', frame_event((drive_1,
new_frame_set('Z', frame_event) +
new_frame_set('W', frame_event) +
new_frame_set('L', frame_elist(((drive_H,
(drive_L,
(drive_H,
new_frame_set('H', frame_event((drive_H,

new_frame_set('-',
END pulse_low_skew;

FUNCTION pulse_high(tl, t2
CONSTANT edge0
CONSTANT edgel
CONSTANT edge2

event_time
event_time
event_time

BEGIN
ASSERT tl < t2

REPORT "Timing violation in Pulse_High frames.

frame_event

)i

TIME)

= etime(0 ns
= etime(t1);
= etime(t2);

"The inequality: T1 < T2 Must hold."

SEVERITY FAILURE;
RETURN

)

new_frame_set('X', frame_event) +
new_frame_set('0', frame_event((drive_ 0,
new_frame_set('l', frame_elist(((drive_0,
(drive_1,
(drive_0,
new_frame_set('Z', frame_event) +
new_£frame_set('W', frame_event) +
new_frame_set('L', frame_event((drive_L,
new_£frame_set('H', frame_elist(((drive_L,
(drive_H,
(drive_IL,

new_frame_set('-',
END pulse_high;

frame_event

)

edgel),
edgel),

edge2)))) +
edgel) Yoy o+

edgel),
edgel),
edge2)))) +
edgel) Y) o+

RETURN frame_set IS

"o

edgel) Yoy o+
edgel),
edgel),
edge2)))) +

edgel))
edgel) ,
edgel),
edge2)))) +

FUNCTION pulse_high skew{ t0, t1, t2 TIME) RETURN frame_set
CONSTANT edge0 event_time := etime(t0);
CONSTANT edgel event_time := etime(tl);
CONSTANT edge2 event_time := etime(t2);
BEGIN
ASSERT t0 < tl AND tl1l < t2
REPORT "Timing violation in Pulse_High frames." &

"The inequality: TO < Tl < T2 Must hold."

SEVERITY FAILURE;
RETURN

new_frame_set('X', frame_,
new_frame_set('0', frame_
new_frame_set('1’ frame_
new_frame_get('Z', frame_
new_frame_set(‘W' frame_

event) +

event { { drive_0,

eligt(((drive_0,
(drive_1,
(drive_0,

event) +

event) +

67

edgel
edgel
edgel
edge2

I D
).
),
LI B B

18

new_frame_set('L', frame_event((drive_L, edgel Y) o+
new_frame_set('H', frame_ elist(((drive_ L, edge0
(drive_H, edgel

(drive_L, edge2

)) o+
new_frame_get('-', frame_event);
END pulse_high skew;

FUNCTION window(tl1, t2 : TIME) RETURN frame_set IS
etime(0 ns);

etime(tl1);
etime(t2);

CONSTANT edgel : event_time
CONSTANT edgel : event_time
CONSTANT edge2 : event_time

oo

BEGIN

ASSERT tl < t2

REPORT "Timing violation in Window frames." &

"The inequality: Tl < T2 Must hold."
SEVERITY FAILURE;
RETURN
new_frame_set('X', frame_elist(({(dont_care, edgel),

(sense_X, edgel),
(dont_care, edge2))))
(
(

new_frame_set('0', frame_elist(((dont_care, edgel),
sense_0, edgel),
(dont_care, edge2))))
new_frame_set('l', frame_elist(((dont_care, edgel),
(sense_1, edgel),
(dont_care, edge2))))
new_frame_set('Z', frame_elisgt(((dont_care, edgel),
(sense_2, edgel),
(dont_care, edge2))))
new_frame_set('W', frame_elist(((dont_care, edgel),
(gsense_W, edgel),
(dont_care, edge2))))
new_frame_set('L', frame_eligt(({(dont_care, edgel),
(sense_L, edgel),
(dont_care, edge2))))
new_frame_set('H', frame_elist(((dont_care, edgel),
(sense_H, edgel),
(dont_care, edge2))))
new_£frame_set('-', frame_event((dont_care, edgel)))
END window;

FUNCTION window_skew(t0, tl1, t2 : TIME) RETURN frame_set IS

etime(t0);
etime(t1);
etime(t2);

CONSTANT edgel : event_time
CONSTANT edgel : event_time
CONSTANT edge2 : event_time

BEGIN
ASSERT t0 < t1 AND tl1 < t2
REPORT "Timing violation in Window frames." &
“The inequality: T0 < Tl < T2 Must hold."
SEVERITY FAILURE;
RETURN
new_frame_set('X', frame_elist(((dont_care, edgel),
(sense_X, edgel),
(dont_care, edge2))))
new_frame_set('0', frame_elist(((dont_care, edgel),
({sense_0, edgel),
(dont_care, edge2))))
new frame_set('l', frame_elist{(((dont_care, edgel),
(sense_1, edgel),
(dont_care, edge2))))
new_frame_set('Z', frame elist{ ((dont_care, edgel),
(sense_2Z, edgel),
(dont_care, edge2))))
new_frame_set('W', frame elist{ ((dont_care, edgel),
(sense_W, edgel),
(dont_care, edge2))))
new_frame_set('L', frame_elist(((dont_care, edgel),
(sense_L, edgel),
(dont_care, edge2))))
new_frame_set('H', frame_elist(((dont_care, edgel),
(sense_H, edgel),
(dont_care, edge2))))
new_frame_set('-', frame_event{ (dont_care, edgel)))
END window_skew;

END waves_1164_frames;

68

APPENDIX 3: TESTBENCH UTILITIES

LIBRARY waves_std;
USE waves_std.waves_system.ALL;

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

PACKAGE waves_1164_utilities IS

-~ This function converts a waves port element to 1164 std_logic bit.
-~ The Translation is specific to the order of logic value definitions
-- defined in the waves_1164_logic_values package
FUNCTION stim_1164(port_element : system_waves_port)

RETURN STD_LOGIC;

-- This function converts a waves port element to 1164 std_logic bits
-- The Translation is specific to the order of logic value definitions
-- defined in the waves_1164_logic_values package
FUNCTION stim 1164(port_list : system waves_port_list)

RETURN STD_ULOGIC_VECTOR;

-- This function converts a waves port list to 1164 std_logic values
-- The Translation is specific to the order of logic value definitions
-- defined in the waves_1164_logic_values package
FUNCTION stim 1164(port_list : system waves_port_list)

RETURN STD_LOGIC_VECTOR;

-- This function converts a waves port element to 1164 std_logic bits
-- IT ALSO strips off the drive values and replaces them with '-'
-~ The Translation is specific to the order of logic value definitions
-- defined in the waves_1164_logic_values package
FUNCTION expect_1164(port_element : system_waves_port)

RETURN STD_ULOGIC;

-- This function converts a waves port list to 1164 std_logic_vectors
-- IT ALSO strips off the drive values and replaces them with '-'
-- The Translation is specific to the order of logic value definitions
-- defined in the waves_1164_logic_values package
FUNCTION expect_1164(port_list : system waves_port_list)

RETURN STD_ULOGIC_VECTOR;

-- This function converts a waves port element to 1164 std_logic bits
-~ IT ALSO strips off the sense values and replaces them with 'Z'
-- The Translation is specific to the order of logic value definitions
-- defined in the waves_1164_logic_values package .
FUNCTION bi_dir 1164(port_element : system_waves_port)

RETURN STD_LOGIC;

69

-— This function converts a waves port list to 1164 std_logic_vectors
-- IT ALSO strips off the sense values and replaces them with 'Z'
-- The Translation is specific to the order of logic value definitions
-- defined in the waves_1164_logic_values package
FUNCTION bi_dir_1164(port_list : system waves_port_list)

RETURN STD_LOGIC_VECTOR;

-- This function evaluates two 1164 std_logic bits for compatibility

-— The actual data bit is evaluated to determine if it is compatible

-- to a expected or predicted value. The order must be preserved.

-- example if actual data is '-' and expected data 'l’' result = false
-- if actual data is 'l1' and expected data '-' result = true

FUNCTION compatible(actual: STD_LOGIC;
expected : STD_ULOGIC)

RETURN BOOLEAN;

-- This function evaluates two 1164 std_logic_vectors for compatibility
-- The actual data bit is evaluated to determine if it is compatible
-- to a expected or predicted value. The order must be preserved.
-- example if actual data is '-' and expected data 'l' result = false
- if actual data is 'l' and expected data '-' result = true
FUNCTION compatible(actual: STD_ULOGIC_VECTOR;

expected : STD_ULOGIC_VECTOR)

RETURN BOOLEAN;

-- This function evaluates two 1164 std _logic_vectors for compatibility
-- The actual data bit is evaluated to determine if it is compatible
-- to a expected or predicted value. The order must be preserved.
-- example if actual data is '-' and expected data 'l' result = false
-- if actual data is 'l1' and expected data '-' result = true
FUNCTION compatible(actual: STD_LOGIC_VECTOR;

expected : STD_ULOGIC_VECTOR)

RETURN BOOLEAN;

END waves_1164_utilities;

PACKAGE BODY waves_1164_utilities IS

TYPE boolean_matrix IS ARRAY (STD_ULOGIC, STD_ULOGIC) OF BOOLEAN;
-- Define Compatible Table. (Actual, Expected)

CONSTANT compatible_table : boolean_matrix :=
-~ EXPECTED EXPECTED EXPECTED EXPECTED EXPECTED EXPECTED
-— U X 0 1 zZ w L H ~

FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE

((TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE), -- U’
(FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE), -- X!
(FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE), -- 0
(FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE), - 1
(FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE)}, -- 'z’
(FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE), -~ W'
(FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE), ~- 'L’
(FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE), -- 'H'
()}

TYPE sim code_array IS ARRAY (NATURAL RANGE <> } OF STD_ULOGIC;

CONSTANT translate : sim_code_array :=('-','X','0O','1','Z','W','L','H',
IX!,IOI,IlI,IZI,|WIIILI,IHI);
-- 0 1 2 3 4 5 6 7
-- 8 9 10 11 12 13 14

70

> On

-- This function converts a waves port element to 1164 std_logic bits
-- The Translation is spec¢ific to the order of logic value definitions
-- defined in the waves_1164_logic_values package
FUNCTION stim_ 1164 (port_element : system waves_port)
RETURN STD_LOGIC IS

BEGIN

RETURN translate(port_element.l_value);
END stim_1164;

-- This function converts a waves port list to 1164 std_logic_vectors
-- The Translation is specific to the order of logic value definitions
-- defined in the waves_1164_logic_values package
FUNCTION stim_1164(Port_list : system_waves_port_list)

RETURN STD_ULOGIC_VECTOR IS

VARIABLE r : STD_ULOGIC_VECTOR(port_list'RANGE) ;
BEGIN
FOR i IN port_list'RANGE LOOP
r(i):= translate(port_list(i).l_value };
END LOOP;
RETURN r;
END stim_1164;

-- This function converts a waves port list to 1164 std _logic_vectors
-- The Translation is specific to the order of logic value definitions
-- defined in the waves_1164_logic_values package
FUNCTION stim_1164(port_list : system_ waves_port_list)

RETURN STD_LOGIC_VECTOR IS

VARIABLE r : STD_LOGIC_VECTOR (port_list'RANGE);
BEGIN
FOR i IN port_list'RANGE LOOP
r(i):= translate(port_list(i).l_value);
END LOOP;
RETURN r;
END stim_1164;

-— This function converts a waves port element to 1164 std_logic bits
__ IT ALSO strips off the drive values and replaces them with '-'

-- The Translation is specific to the order of logic value definitions
-- defined in the waves_1164_logic_values package

FUNCTION expect_1164(port_element : system waves_port)
RETURN STD_ULOGIC IS

VARIABLE result : STD_ULOGIC;
BEGIN
IF (port_element.l_value < 8) THEN
result:= translate(port_element.l_value };
ELSE
result:='-"';
END IF;
RETURN result;
END expect_1164;

71

-- This function converts a waves port list to 1164 std_logic_vectors
-~ IT ALSO strips off the drive values and replaces them with '-'

-- The Translation is specific to the order of logic value definitions
-- defined in the waves_1164_logic_values package

FUNCTION expect_1164(port_list : system waves_port_list)
RETURN STD_ULOGIC_VECTOR IS

VARIABLE r : STD_ULOGIC_VECTOR(port_list'RANGE)};
BEGIN
FOR i IN port_list'RANGE LOOP
IF (port_list(i).l_walue < 8 } THEN
r(i):= Translate(port_list(i).l_value);
ELSE
r{i):='-';
END IF;
END LOOP;
RETURN r;
END expect_1164;

-- This function converts a waves port element to 1164 std_logic bits
-- IT ALSO strips off the sense values and replaces them with 'Z'
-~ The Translation is specific to the order of logic value definitions
-- defined in the waves_1164_logic_values package
FUNCTION bi_dir_1164(port_element : system waves_port)

RETURN STD_LOGIC IS

VARIABLE result : STD_LOGIC;
BEGIN
IF {(port_element.l_value > 7) THEN
result:= translate(port_element.l_value);
ELSE
result:='Z"';
END IF;
RETURN result;
END bi_dir_1164;

-—- This function converts a waves port list to 1164 std_logic_vectors
-~ IT ALSO strips off the sense values and replaces them with 'Z’
-- The Translation is specific to the order of logic value definitions
-- defined in the waves_1164_logic_values package
FUNCTION bi_dir_1164(port_list : system_waves_port_list)

RETURN STD_LOGIC_VECTOR IS

VARIABLE r : STD_LOGIC_VECTOR(port_list'RANGE) ;
BEGIN
FOR i IN port_list'RANGE LOOP
IF (Port_list(i).l_wvalue > 7) THEN
r(i):= translate(port_list(i).l_value);
ELSE
r{(i):='z2';
END IF;
END LOOP;
RETURN r;
END bi_dir_1164;

-- This function evaluates two 1164 std _logic bits for compatibility
-- The actual data bit is evaluated to determine if it is compatible
-- to a expected or predicted value. The order must be preserved.

FUNCTION compatible(actual : STD_LOGIC;
expected : STD_ULOGIC)

RETURN BOOLEAN IS
BEGIN

RETURN (compatible_table(actual, expected) };
END compatible;

72

-- This function evaluates two 1164 std_logic vectors for compatibility
-- The actual data bit is evaluated to determine if it 1is compatible
-- to a expected or predicted value. The order must be preserved.

FUNCTION compatible(actual : STD_ULOGIC_VECTOR;
) expected : STD_ULOGIC_VECTOR)

RETURN BOOLEAN IS

(actual'LENGTH-1 DOWNTO 0) IS actual;

ALIAS a : STD_ULOGIC_VECTOR
ALIAS e : STD_ULOGIC_VECTOR (expected'LENGTH-1 DOWNTO 0) IS expected;
BEGIN

ASSERT e'LENGTH = a'LENGTH _
REPORT "Vector Length's Incompatable in Compatible Function"
SEVERITY FAILURE;

FOR index IN (expected'LENGTH
IF NOT compatible_table(a({index),

RETURN FALSE;
END IF;

END LOOP;

RETURN TRUE;

END compatible;

-1) DOWNTO (0 LOOP
e(index)) THEN

-- This function evaluates two 1164 std_logic vectors for compatibility
-- The actual data bit is evaluated to determine if it is compatible
-- to a expected or predicted value. The order must be preserved.

FUNCTION compatible(actual : STD_LOGIC_VECTOR;
expected : STD_ULOGIC_VECTOR)

RETURN BOOLEAN IS
(actual 'LENGTH-1 DOWNTO 0) IS actual;

ALIAS a : STD_LOGIC_VECTOR
ALIAS e : STD_ULOGIC_VECTOR (expected'LENGTH-1 DOWNTO 0) IS expected;
BEGIN

ASSERT e'LENGTH = a'LENGTH
REPORT "Vector Length's Incompatable in Compatible Function®
SEVERITY FAILURE;

FOR index IN (expected'LENGTH -1)
IF NOT compatible_table(a(index),

RETURN FALSE;

END TIF;

END LOOP;

RETURN TRUE;

END compatible;

DOWNTO 0 LOOP
e(index)) THEN

END waves_1164_utilities;

73

APPENDIX 4: TESTBENCH USER’S GUIDE

A4.1 VHDL MODEL

-~ This is a behavioral model for a Positive edge triggered D Flip Flop
-- for a WAVES example.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY d_£1lip_f£flop IS
PORT (clock :IN STD_LOGIC ;
d " :IN STD_LOGIC ;
q :OUT STD_LOGIC ;
q_bar :0UT STD_LOGIC);
END d_£lip_flop ;
ARCHITECTURE behavioral OF d_f£lip_ f£lop IS
BEGIN
main : PROCESS (c¢lock)
BEGIN

IF clock '

END PROCESS;

END behavioral;

74

A4.2

WAVES HEADER FILE

ok khohokb Ak Rk ok kb kbbb ko kbR kb bk Aok ok kb bk Kk A

~— #wxr**4* Hoader File for Entity: d_flip flop

s ok ok ok ok ok ok b sk ok s o ok ok ok o o o ok ok b ok ok ok b ok ok ok ok o b o o ok ok ok ok o ok ok ok o ok ot ok ok ok b o
Sk e sk ok ok sk sk ok b b b ok kb ok sk R ok b b b b Sk bk ok Rk Ak bk kb bk

-- Data Set Identification Information

TITLE A General Description

DEVICE_ID d_flip_flop

DATE Wed Sep 6 15:09:10 1995

ORIGIN Company X Design Team

AUTHOR Company or Person

AUTHOR Maybe Multiple ... Companies or People
DATE Wed Sep 6 15:09:10 1995

ORIGIN Modified by Company X Design Team
AUTHOR who did it Company or Person

OTHER Any general comments you want

OTHER Built Using the WAVES-VHDL 1164 STD Libraries

-- Data Set Construction Information

waves_filename ./waves_pins.vhd WORK
LIBRARY waves_1164;

USE waves_1164 .waves_1164_pin_codes.ALL;

USE waves_1164.waves_1164_logic_value.ALL;

USE waves_l1164.waves_interface.ALL;

USE WORK.uut_test_pins.ALL;

waves_unit waves_objects WORK
waves_filename ./waves_wgen.vhd WORK
external_ filename d_f£flip_flop_vectors.txt vectors
waveform generator_procedure WORK.waves_d_flip_ flop.waveform

75

Ad4.3 WAVES PINS PACKAGE

kkxkxx Phig File Was Automatically Generated — *¥*¥xxx#

—— ***x#%¥* By The WAVES-VHDL Tool Set RA AR A KA A
—— *x*x44** Gepnerated for Entity: d_flip_ flop
—— ****%%%* Phig File Was Generated on: Wed Sep 6 15:089:10 1995

PACKAGE uut_test_pins IS
TYPE test_pins IS (clock, d, q, g_bar);
END uut_test_pins;

76

A4.4 WAVES GENERATOR PACKAGE -

- Axxkdx4% Thig File Was Automatically Generated — *****¥x¥

~— *#*¥x**x* By The WAVES-VHDL Tool Set EH KK KA

-~ ****xx4* Geoperated for Entity: d_flip_flop

- #k¥xkx** Thig File Was Generated on: Wed Sep 6 15:09:10 1985

LIBRARY waves_std;
USE waves_std.waves_standard.ALL;

USE STD.TEXTIO.ALL;

LIBRARY waves_1164;

USE waves_1164.waves_1164_£frames.ALL;
USE waves_l1l64.waves_1164_pin_codes.ALL;
USE waves_l1l164.waves_interface.ALL;

USE WORK.waves_objects.ALL;

USE WORK.uut_test_pins. ALL;

PACKAGE wgp_d_f£flip_flop IS

PROCEDURE waveform({SIGNAL wpl : INOUT waves_port_list);
END wgp_d_f£flip_£flop:

PACKAGE BODY wgp_d_£flip_f£flop IS

-- This is the uut pin declaration pin and ordering
-- Remember you need to match the External file to This order

-- clock, D, Q, Q_bar
PROCEDURE waveform(SIGNAL wpl : INOUT waves_port_list) IS
FILE vector_file : TEXT IS IN "dff_vect.txt";

VARIABLE vector : file_slice := new_file_slice;

-- declare time constants to use or use time literals
-- constants or time literals can be used as the frame time values

CONSTANT outputs: pinset:= new_pinset((q, q_bar));

CONSTANT inputs: pinset:= new_pinset((d));

CONSTANT vector_fsa : frame_set_array :=
new_frame_set_array{pulse_high(5 ns, 15 ns), clock) +

new_frame_set_array(non_return(0 ns), inputs) +
new_frame_set_array(window(10 ns, 20 ns), outputs);

VARIABLE timing : time_data := new_time_data(vector_£fsa);
BEGIN
LOOP
read_file_slice (vector_file, vector); -- get first vector

EXIT WHEN vector.end of_file;
apply (wpl, vector.codes.ALL, delay(vector.fs_time), timing) ;
END LOOP;

END waveform;

END wgp_d_f£flip_£flop;

| 77

A4.5

WAVES TESTBENCH CODE -

—- *x#x¥¥xx Thig File Was Automatically Generated ¥*¥#***x**

—~ ##¥*x¥%* By The WAVES-VHDL Tool Set L
—- *x*x*r** Generated for Entity: d_flip flop
__ #**xx*%* Thig File Was Generated on: Wed Sep 6 15:09:12 1995

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

LIBRARY waves_1164;
USE waves_1164.waves_1164_utilities.ALL;

USE WORK.uut_test_pins.ALL;
USE WORK.waves_objects.ALL;

USE WORK.wgp_d_f£f1lip_flop.ALL;

-- Include component libary references here

-- User Must Modify And ADD component libary references here
-- Include component libary references here

ENTITY test_bench IS
END test_bench;

ARCHITECTURE d_£1lip_£flop_test OF test_bench IS

__**

__***********CONFIGURATION SPECIFICATION XS EE S RS R RS S S

__**

COMPONENT d_f£1lip_flop

PORT (clock :IN STD_LOGIC;
d :IN STD_LOGIC;
q :OUT STD_LOGIC;
q_bar :OUT STD_LOGIC) ;

END COMPONENT;

-- Modify entity use statement
-- User Must Modify modify and declare correct
-- .. Architecture, Library, Component
-- Modify entity use statement
FOR ALL:d_f£flip_flop USE ENTITY WORK.d £lip_ f£flop (behavioral) ;

__**

-- stimulus signals for the waveforms mapped into UUT INPUTS
__**

SIGNAL wav_stim clock :STD_LOGIC;
SIGNAL wav_stim_d :STD_LOGIC;

__**

-- Expected signals used in monitoring the UUT OUTPUTS

__**

SIGNAL fail_signal : STD_LOGIC;
SIGNAL wav_expect_q :STD_LOGIC;
SIGNAL wav_expect_q_bar :STD_LOGIC;

e gk o sk ok ok o ok s ok ok ok ok ok ok o sk ok ok ok ok ok ok ok o ok sk ok ok ok ok ok o ok ok ok ok o ok ok ok ok ok b S o b b ok ok A ok b

-- UUT Output signals used In Monitoring ACTUAL Values

__**

SIGNAL actual_g :STD_LOGIC;
SIGNAL actual_g_bar :STD_LOGIC;

__***

-- Bi_directional signals used for stimulus signals mapped
-~ into UUT INPUTS and also monitoring the UUT OUTPUTS

__***

78

-- No Bidirectional Pins On UUT

__***

- WAVES signals OUTPUTing each slice of the waves port list

__***

SIGNAL wpl : waves_port_list;

BEGIN

__***

-- process that generates the WAVES waveform
__***

waves: waveform(wpl);

__***

-- processes that convert the WPL values to 1164 Logic Values
__***

wav_stim_ clock <= stim_1164 (wpl.wpl(1));
wav_stim d <= stim_1164 (wpl.wpl(2));
wav_expect_q <= expect_1164 (wpl.wpl{(3)}));
wav_expect_q_bar <= expect_1164 (wpl.wpl(4));

ek sk o sk b ok ok sk ok ok ok ok o ok ok ok sk o sk ot b ok ok ok ok ok ok ok ok sk b ok b b b b ok

-- UUT Port Map - Name Symantics Denote Usage

L hkdk Rk kA kb Rk kbbb Rk ok A kbR A Rk

ul: d_f£flip_flop

PORT MAP(
clock => wav_stim clock,
a => wav_stim d,
qQ => actual_gq,
q_bar => actual_gq_bar);

ek ok b sk ok ok ok ok s ok ok ok o ok o sk o ok ok ok ok ok ok ok ok ok ok sk sk ok ok o ok b ok ok ok b o b sk ok b b Sk ok b ok b sk b b ok b ok

-- Monitor Processes To Verify The UUT Operational Response
.__***

monitor_q:
PROCESS (actual_g, wav_expect_gq)
BEGIN
ASSERT (compatible (actual => actual_gq,
expected => wav_expect_q))
REPORT "Error on Q output" SEVERITY WARNING;

IF (compatible (actual_gq, wav_expect_q)) THEN
fail_signal <='L'; ELSE fail_signal <='1l"';
END IF;

END PROCESS;

monitor_q_bar:
PROCESS (actual_g bar, wav_expect_q_bar)
BEGIN
ASSERT (compatible (actual => actual_g bar,
expected => wav_expect_q_bar))
REPORT "Error on Q_bar output® SEVERITY WARNING; .

IF (compatible (actual_g_bar, wav_expect_q_bar)) THEN
fail_signal <='L'; ELSE fail_signal <='1l';
END IF;

END PROCESS;

END 4_f£flip_£flop_test;

79

A4.6 EXTERNAL VECTOR FILE

%clock data @ OQBAR
1 1 1 0 : 20 ns;
0 0 1 0 : 20 ns;
1 0 0 1 : 20 ns;
1 1 1 0 : 20 ns;
1 0 0 1 : 20 ns;

APPENDIX 5: 54/74180 8 - BIT PARITY
GENERATOR/CHECKER

AS5.1 VHDL MODEL

-- TITLE: Fairchild 54/74180 8-BIT PARITY GENERATOR/CHECKER
-~ DATE : 5 May 1995

-~ VERSION : 2.0

-- FILENAME: parity_gen.vhd

-- FUNCTION: Entity, Architecture for the Fairchild 54/74180

-= 8-BIT PARITY GENERATOR/CHECKER - Behavioral Model.

-- AUTHOR : Steven Drager
-- QORGANIZATION: Rome Laboratory

-~ PURPOSE AND USE: This was written as an example to help build the Rome
-— Laboratory WAVES tools.

-- TIMING: None
-~ NOTES

-- DEVELOPMENT PLATFORM : Pentium w/WIN'S95
-- VHDL SOFTWARE VERSION: MTI VSYSTEM/WINDOWS vd4.2f

-- HISTORY:

--16 May 95 - v2.0 - Includes timing

-- 9 May 95 - v1.5 - Changed to case statement, still no timing.
-- 5 May 95 - vl1.0 - Initial version, functional only, no timing.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY parity_generator_checker IS

PORT (data_input :IN STD_LOGIC_VECTOR(0 TO 7);
odd_input : IN STD_LOGIC;
even_input :IN STD_LOGIC;
odd_parity_output :OUT STD_LOGIC;
even_parity output :OUT STD_LOGIC) ;

END parity_generator_ checker;
ARCHITECTURE behavioral OF parity generator_checker IS
BEGIN

PROCESS (data_input, odd_input, even_input)

VARIABLE parity :STD_LOGIC;
VARIABLE controls :STD_LOGIC_VECTOR(0 TO 2);
VARIABLE tplh_odd :TIME;
VARIABLE tphl_odd :TIME;
VARIABLE tplh_even :TIME;
VARIABLE tphl_even :TIME;
81

BEGIN

-- Generate Timing

IF odd_input = '0' AND data_input'EVENT THEN
tplh_odd = 48 ns;
tphl_odd = 38 ns;
tplh_even := 60 ns;
tphl_even := 68 ns;
END IF;
JF even_input = '0' AND data_input'EVENT THEN
tplh_odd = 60 ns;
tphl_odd = 68 ns;
tplh_even := 48 ns;
tphl_even := 38 ns;
END IF;
IF NOT data_input'EVENT AND (odd_input'EVENT OR even_input'EVENT)
tplh_odd = 20 ns;
tphl_odd = 10 ns;
tplh_even := 20 ns;
tphl_even := 10 ns;

END IF;
-- Calculate Parity
parity := '0';
FOR x IN data_input'RANGE LOOP
parity := parity XOR data_input(x);
END LOOP;
-- Assign Output
controls := parity & odd_input & even_input;
CASE controls IS

WHEN "100" | "000" =>
odd_parity output <= 'l' AFTER tplh_odd;

even_parity output <= '1' AFTER tplh_even;

WHEN "101" | "010" =>
odd_parity output <
even_parity_ output <

WHEN "110"* | "001" =>
odd_parity output <«
even_parity_output <

WHEN "111" | "011" =>
odd_parity_output <
even_parity output <

WHEN OTHERS =>

NULL;

END CASE;

AFTER tplh_odd;

nn
funy

'0' AFTER tphl_odd;

'0' AFTER tphl_odd;

on
[=)

END PROCESS;
END behavioral;

82

'0' AFTER tphl_even;

'l* AFTER tplh_even;

AFTER tphl_even;

THEN

A5.2 WAVES HEADER FILE

%ok o ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok b ok 5 ok ok ok ok o sk ok o o ok o ok ok o o ok ok ok ok ok ok b ok b

- *EkxAxx* Header File for Entity: parity_generator_checker

ook ok ok ok ok o b ok ok o ok ok o b ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok o ok ok b b o ok ok o ok ok ok b o ok o
d ok ok ok ok ok o o ok ok b ok ok ok ok ok o ok ok b ok ok o o ok ok ok st ok ot db ok o ok ok ok ok b ok b o ok ok b ob ok ok o

-- Data Set Identification Information

TITLE A General Description

DEVICE_ID parity generator_checker

DATE Thu Sep 7 09:36:56 1995

ORIGIN Company X Design Team

AUTHOR Company or Person

AUTHOR Maybe Multiple ... Companies or People
DATE Thu Sep 7 09:36:56 1995

ORIGIN Modified by Company X Design Team
AUTHOR Who did it Company or Person

OTHER Any general comments you want

OTHER Built Using the WAVES-VHDL 1164 STD Libraries

-- Data Set Construction Information

waves_filename ./waves_pins.vhd WORK
LIBRARY waves_1164;

USE waves_1164.waves_1164_pin codes.ALL;

USE waves_1164.waves_1164_logic_value.ALL;

USE waves_1164.wvaves_interface.ALL;

USE WORK.uut_test_pins.ALL;

waves_unit waves_objects WORK
waves_filename ./waves_wgen.vhd WORK

external_filename parity_generator_ checker_vectors.txt vectors

waveform_generator_procedure WORK.waves_parity generator_checker.waveform

83

AS5.3 WAYVES PINS PACKAGE

~- x¥k¥*x** This File Was Automatically Generated *¥*xxx**

—- *****x%% By The WAVES-VHDL Tool Set k ok ok ok kK

-- wkx¥*x** Generated for Entity: parity_generator_checker

—_ #*%x%**% Thig File Was Generated on: Thu Sep 7 09:36:56 1995

PACKAGE uut_test_pins IS

TYPE test_pins IS (data_input_0, data_input_1, data_input_2, data_input_3,
data_input_4, data_input_5, data_input_6, data_input_7, odd_input,
even_input, odd parity_output, even_parity_output);

END uut_test_pins;

84

A5.4 WAVES GENERATOR PACKAGE

—— *kkdsddd Thig File Was Automatically Generated
doA koA kA E A

—— *¥xxkx¥d Dy The WAVES-VHDL Tool Set

LA A RS 2 & &

-- ¥ExEdkdd Generated for Entity: parity_generator_checker
: Thu Sep 7 09:36:57 1995

-- *kkxdddd Thig File Was Generated on

LIBRARY waves_std;
USE waves_std.waves_standard.ALL;

USE STD.TEXTIO.ALL;

LIBRARY waves_1164;

USE waves_1164 .waves_1164_frames.ALL;
USE waves_1l1164.waves_1164_pin_codes.AlL
USE waves_1164.waves_interface.ALL;
USE WORK.waves_objects.ALL;

USE WORK.uut_test_pins.ALL;

PACKAGE wgp_parity_generator checker I
PROCEDURE waveform(SIGNAL wpl
END wgp_parity generator_checker;

L;

S

INOUT waves_port_lisgt);

PACKAGE BODY wgp_parity_generator_chec

ker IS

-- This is the uut pin declaration pin and ordering

-- Remember you need to match the External file to This order

-- Data_input_0, Data_input_1, Data_input_2,
-- Data_input_5, Data_input_6, Data_input_7,

-- 0dd_parity_output, Even_parity_output

Data_input_3,
0dd_input,

PROCEDURE waveform(SIGNAL wpl : INOUT waves_port_list)

FILE vector_file : TEXT IS IN "vectors.txt";

VARIABLE vector : file_slice :=

new_file_sl

ice;

Data_input_4,

-- declare time constants to use or use time literals
-- constants or time literals can be used as the frame time values

CONSTANT data_input: pinset:=
data_input_2, da

Even_input,

new_pinset ({ data_input_0, data_input_1,
data_input_4, data_input_5,
data_input_6, data_input_7));

ta_input_3,

CONSTANT outputs: pinset:= new_pinset((odd_parity_ output,
even_parity output));

CONSTANT in_pins: pinset:= new_pinset ((odd_input,
even_input));

CONSTANT inputs: pinset:= in_ping OR data_input;

CONSTANT vector_fsa : frame_se
new_frame_get_array(non_re

t_array :=
turn(0 ns),

new_frame_get_array(window(70 ns, 100

VARIABLE timing : time_data :=

BEGIN
LOOP

inputs)

+

ns), outputs);

new_time_data(vector_fsa);

read_file_slice (vector_file, vector);
EXIT WHEN vector.end_of_file;

apply (wpl, vector.codes.ALL, delay(vector.fs_time),

-- get first vector

- or use internal slice time format as below

-= apply (wpl, vector.codes.all,
END LOOP;

END waveform;

END wgp_parity_generator_checker;

Delay(ns),

85

timing);

timing);

AS.5

WAVES TESTBENCH CODE

kxxkk* Thig File Was Automatically Generated — r¥*x*#

—~ #*xxxx** By The WAVES-VHDL Tool Set ko k ok ok ok
*#+***** Generated for Entity: parity_generator_checker
#x*x¥tt* This File Was Generated on: Thu Sep 7 09:37:00 1995

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

LIBRARY waves_1164;
USE waves_1164 .waves_1164_utilities.ALL;

USE WORK.uut_test_pins.ALL;
USE WORK.waves_objects.ALL;

USE WORK.wgp_parity generator_checker.ALL;

-~ Include component libary references here

-- User Must Modify And ADD component libary references here
-- Include component libary references here

ENTITY test_bench IS
END test_bench;

ARCHITECTURE parity generator_checker_test OF test_bench IS

T TP FFTEEEEE PR TR SRS EES SIS S S S ESS R RS R E LRSS

—_kk A EA KA A RN RCONFTGURATION SPECIFICATION koo o &k ok A ok ok ok ok ok ko

sk ok ok ok ok ok ok o b o o ok ok ot b ob S b b ok ok ok Sk o ok b ok ok ok o o o ok ok ok b A o o ok ok ok ok ok ok ok ok ok b b

COMPONENT parity generator_checker

PORT (data_input :IN STD_LOGIC_VECTOR(0 TO

odd_input :IN STD_LOGIC;
even_input :IN STD_LOGIC;
odd_parity output :OUT STD_LOGIC;
even_parity_ output :OUT STD_LOGIC);

END COMPONENT;

-- Modify entity use statement
-- User Must Modify modify and declare correct
-- .. Architecture, Library, Component
-- Modify entity use statement
FOR ALL:parity generator_checker USE ENTITY
WORK .parity_generator_checker (behavioral) ;

ek ok ok ok ok ok ok ok o ok ok oF ok o ok ok ok ok S ok ok ok ok b ok b ok ok ok b ok ok ok ok ok ok ok ok o ok ok b b ok sk ok sk b b o o b o ok

~- stimulus signals for the waveforms mapped into UUT INPUTS
__**

SIGNAL wav_stim_data_input
SIGNAL wav_stim_odd_input
SIGNAL wav_sgtim_even_input

:STD_LOGIC;
:STD_LOGIC;

__**

-- Expected signals used in monitoring the UUT OUTPUTS

R T 22 R R EE X E RS FE SRS SES S SRS S S SRS EEEE RS RS

SIGNAL fail_signal :STD_LOGIC;
SIGNAL wav_expect_odd_parity_ output :STD_LOGIC;
SIGNAL wav_expect_even_parity output :STD_LOGIC;

o Ak ok ok sk ok o sk ok ok ok ok o ok o ok ok ok o ok ok ok sk ok ok s o o ok ok ok ok ok b ok ok ok o ok ok ok o b b ok ok R b b ok b

-— UUT Output signals used In Monitoring ACTUAL Values

P R R LR 22 R RS RS RS R R SRS ERES S S SRS

SIGNAL actual_odd_parity_output :STD_LOGIC;
SIGNAL actual_even parity output :STD_LOGIC;

__***
-- Bi_directional signals used for stimulus signals mapped
-- into UUT INPUTS and also monitoring the UUT OUTPUTS

__***

86

:STD_LOGIC_VECTOR(0 TO 7);

7

)i

-- No Bidirectional Pins On UUT

o T ok e ok ok ok ok ok ok sk sk ok ok o st o ok ok ok o ok ok ok ok Sk o ok b b ok b ok b b b ok b

-- WAVES signals OUTPUTing each slice of the waves port list

— %k ok s o gk ok ok ok o ok s ok ok ok o sk o b sk ok o ok o oF o ok ob ok ob o oF S ok b oF b S ok ok o b o ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok b ok b ok b

SIGNAL wpl : waves_port_list;

BEGIN

TP IIISEE ISR ESEES S S S S SRR RS SRS SRS SRR ERREREREEEEEESERESESESSS]

-- process that generates the WAVES waveform
B P PES S EEEEEESESEESESS SR SE S SRS E SRR ERS RS ERESERERERERERESSES

waves: waveform(wpl);

R P F R R R E R R PR ES N RS LSS S SRS E S REEERESSRERESEEEREERESEE NS

-- processes that convert the WPL values to 1164 Logic Values
__***

wav_stim _data_input <= gtim 1164 (wpl.wpl(1 TO 8));
wav_gtim_odd_input <= gtim_1164(wpl.wpl(9));
wav_stim_even_input <= gtim_1164 (wpl.wpl(10));
wav_expect_odd_parity_output <= expect_1164 (wpl.wpl(11));
wav_expect_even_parity output <= expect_1164(wpl.wpl(12));

S T EE SRR Z RSS2SR SRS SRS EEEEESE S SRS

-- UUT Port Map - Name Symantics Denote Usage

o 2o ok ok ok ob o Sb o 3k b o b ok ob O ok ok ok ok o sk ok b o ok o ok ok ok ok o b o o ok o ok b b ok b o

ul: parity_generator_checker

PORT MAP(:
data_input => wav_stim_data_input,
odd_input => wav_stim_odd_input,
even_input => wav_stim_even_input,
odd_parity_output => actual_odd_parity_output,

even_parity_output actual_even_parity_output);

A

o e o ok e S ok ok ok ok ok o ok ok ok ok ok o b ok ok ok ob ok ok ok o ok Sk ok S o ok ok ok Sk oF Sk ok ok ok ok ok ok ok ok o Sk ok sk ok ok ok b ok o b b

-- Monitor Processes To Verify The UUT Operational Response
e e ok o ok o b S ok b 3k ob ok o o ok ok b ok ok o s b ok o ok o b ok ok ob ok ok ok ok ok sk ok b ok ok sk ot ok ok Rk b ok ok b b ok ok o

monitor_odd_parity output:
PROCESS (actual_odd_parity_output, wav_expect_odd_parity output)
BEGIN
ASSERT (compatible (actual => actual_odd_parity_output,
expected => wav_expect_odd_parity_output))
REPORT "Error on 0dd_parity_output output" SEVERITY WARNING;

IF (compatible (actual_odd_parity_output, wav_expect_odd_parity output))
fail_signal <='L'; ELSE fail_signal <='1l"‘';

END IF;

END PROCESS;

monitor_even_parity_output:
PROCESS (actual_even_parity output, wav_expect_even parity_output)
BEGIN
ASSERT (compatible (actual => actual_even_parity_output,
expected => wav_expect_even_parity_output))
REPORT "Error on Even_parity output output" SEVERITY WARNING;

IF (compatible (actual_even_parity_output, wav_expect_even_parity output)
THEN
fail_signal <='L'; ELSE fail_signal <='1"';
END IF;
END PROCESS;

END parity generator_checker_test;

87

THEN

)

AS.6 EXTERNAL VECTOR FILE

$DDDD
$aaaa
sttt
%aaaa
NN

%iiii
$nnnn
$ppPP
Fuuuu
gttt
%0123

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

DDDD
aaaa
tttt
aaaa
ARE!
iidi
nnnn
ppppP
uuuu
ttet
4567

0000
0001
0010
0011
0000
0001
0010
0011
0000
0001
0010
0011
0000
0001
0010
0011

ov
de
dn
;
ii
nn
pp

tt

01
01
01
01
10
10
10
10
00
00
00
00
11
11
11
11

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

NS;
NS;
NS;
NS;

NS;
NS;
NS;
NS;
NS;
NS;
NS;
NS;
NS;
NS;
NS;

88

APPENDIX 6: SN54/74ALS8169: SYNCHRONOUS
8 - BIT UP/DOWN BINARY COUNTER

A6.1 VHDL MODEL

- TITLE: Texas Instruments SN54ALS8169 Synchronous 8-Bit Up/Down Binary Counter
-- DATE : 3 May 1995

-—- VERSION : 2.1

-- FILENAME: sync_8_UDC_e_a.vhd

-~ FUNCTION: Entity, Architecture for the Texas Instruments SN54ALS8169
-- Synchronous 8-Bit Up/Down Binary Counter - Behavioral Model.

-- AUTHOR : Christopher Flynn
—-- ORGANIZATION: Rome Laboratory

—-- PURPOSE AND USE: This was written as an example to help build the Rome
-— Laboratory WAVES tools.

-- TIMING: Max
-- NOTES : To implement the SN74ALS8169 simply modify the generic timing
-= statements.

-~ DEVELOPMENT PLATFORM : Sun Sparc Station IPX
-- VHDL SOFTWARE VERSION: Cadence Leapfrog, v2.0

-- HISTORY:

~- 18 Apr 95 - v1.0 - Initial version, functional only, no timing.

-- 3 May 95 - v2.0 - Final version with worst case timing.

-~ 26 May 95 - v2.1 - Final version with worst case timing and To_Int and

- To_StdLogicVector functions.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY eight_bit_sync_ud_cntr IS

GENERIC (data_in_setup :TIME := 15 ns;
enp_bar_setup :TIME := 17 ns;
ent_bar_setup :TIME := 17 ns;
load_bar_setup :TIME := 15 ns;
u_d_bar_setup :TIME := 17 ns;
tplh_q :TIME := 18 ns;
tplh_rco_bar :TIME := 14 ns; -- For both CLK and ENT_bar
tplh_rco_bar_ud :TIME := 17 ns;
tphl_rco_bar_ud :TIME := 18 ns
)i
PORT (c¢lk :IN STD_LOGIC ;
load_bar :IN STD_LOGIC ;
up_down_bar :IN STD_LOGIC ;
ent_bar :IN STD_LOGIC ;
enp_bar :IN STD_LOGIC ; .
hgfedcba :IN STD_LOGIC_VECTOR(7 DOWNTO 0) ;
q :OUT STD_LOGIC_VECTOR(7 DOWNTO 0) ;
rco_bar :OUT STD_LOGIC

)i
END eight_bit_sync_ud_cntr;
ARCHITECTURE behavioral OF eight_bit_sync_ud_cntr IS

SIGNAL q_internal : STD_LOGIC_VECTOR(7 DOWNTO 0) ;

89

-~ Model Specific Functions: To_StdLogicVector
-= To_Int

-- The To_StdLogicVector function converts an integer to an
-- 1164 Standard Logic Vector of desired length.

FUNCTION to_stdlogicvector (oper: INTEGER; length: NATURAL)
RETURN STD_LOGIC_VECTOR IS
VARIABLE temp : INTEGER := oper;
VARIABLE temp_result : STD_LOGIC_VECTOR {length -1 DOWNTO 0) :=
(OTHERS => '0');

BEGIN
IF {(oper = INTEGER'LEFT) THEN -- Max negative integer
temp_result (0) := 'l';
IF {length > 31) THEN
temp_result(31) := '1';
END IF;
RETURN temp_result;
END IF;
FOR i IN 0 TO length - 1 LOOP
IF (temp MOD 2) = 1 THEN
temp_result (i) := '1';
ELSE
temp_result(i) := '0';
END IF;

EXIT WHEN temp = 0;
IF temp > 0 THEN

temp := temp / 2;
ELSE
temp := (temp - 1) / 2;
END IF;
END LOOP;

RETURN temp_result;
END to_stdlogicvector;

-- The To_Int function converts an arbitrary length IEEE STD 1164

-- std_logic_vector into an integer. The format of the std_logic_vector
-- is assumed to be two's complement. This function assumes that VECTOR
-- is a decending range, zero bounded vector (ie. VECTOR'length-1 downto 0)
-- and that VECTOR'left is the MSB.

FUNCTION to_int(vector : IN STD_LOGIC_VECTOR) RETURN INTEGER IS

VARIABLE result :INTEGER := 0;
VARIABLE is_neg :BOOLEAN;
VARIABLE temp +STD_LOGIC_VECTOR(wvector'RANGE) := vector;
BEGIN
IF temp(temp'LEFT) = 'l1' THEN
is_neg := TRUE;
temp := NOT temp;
END IF;
FOR i IN temp'RANGE LOOP
IF temp(i) = 'l' THEN
result := result + (2 ** i);
END IF;
END LOOP;
IF is_neg THEN
result := -(result);
result := result - 1;
END IF;
RETURN result;
END to_int;
BEGIN -- Architecture behavioral.

clk_pulse : PROCESS (c¢lk, ent_bar, up_down_bar)

VARIABLE preset :STD_LOGIC_VECTOR(7 DOWNTO 0) ;
VARIABLE internal_rco :STD_LOGIC ;

BEGIN

IF (RISING_EDGE(clk) AND NOT(ent_bar'EVENT) AND
NOT(up_down_bar'EVENT)) THEN

-- Load Preset and Internal_RCO values. :
IF (load_bar = '0' AND load_bar'STABLE(load_bar_setup)) THEN

IF hgfedcba'STABLE(data_in_setup) THEN

90

preset := hgfedcba ;

ELSE
ASSERT FALSE REPORT "Input data not stable !" SEVERITY WARNING;
preset := "XXXXXXXX" ;
END IF;
IF ((preset = "11111111" AND up_down_bar = "'1') OR
({ preset = "00000000" AND up_down bar = '0')) THEN
internal_rco := '0';
ELSE
internal_rco := 'l‘';
END IF;
ELSIF (ent_bar = 'Q' AND enp_bar = '0') THEN
IF (ent_bar'STABLE(ent_bar_setup) AND
enp_bar'STABLE(ent_bar_setup)) THEN
-- Enable counting.
IF up_down_bar'STABLE(u_d_bar_setup) THEN
IF up_down_bar = 'l' THEN -- Count Up.
preset := to_stdlogicvector((to_int(preset) + 1), preset'LENGTH);
ELSIF up_down_bar = '0' THEN -~ Count Down.
preset := to_stdlogicvector((to_int(preset) - 1), preset'LENGTH);
END IF;
ELSE

ASSERT FALSE REPORT "Up_Down_bar input not stable, unable to count !"
SEVERITY WARNING;

END IF;
IF ((preset = "11111111" AND q_internal = "11111110") OR
(preset = "00000000" AND qg_internal = "00000001")) THEN
internal_rco := '0‘;
ELSE
internal_rco := '1';
END IF;
ELSE
ASSERT FALSE REPORT "ENP_bar or ENT_bar not stable !" SEVERITY WARNING;
END IF;
END IF;
q_internal <= preset ;
q <= preset AFTER tplh q ;
rco_bar <= internal rco AFTER tplh_rco_bar ;
END IF; -- IF rising edge(CLK)

IF (RISING_EDGE(ent_bar) AND NOT(clk'EVENT) AND
NOT{ up_down_bar'EVENT)) THEN
rco_bar <= 'l' AFTER tplh_rco_bar ;

ELSE
NULL;
END IF;
IF (RISING_EDGE(up_down_bar) AND NOT(clk'EVENT) AND
NOT(ent_bar'EVENT)) THEN
IF q_internal = "11111111" THEN
rco_bar <= '0' AFTER tplh_rco_bar_ud ;
ELSE
rc¢o_bar <= 'l' AFTER tplh_rco_bar_ud ;
END IF;
ELSE
NULL;
END IF;
IF (FALLING_EDGE(up_down_bar) AND NOT(c<¢lk'EVENT) AND
NOT(ent_bar'EVENT)) THEN
IF g _internal = "00000000" THEN
rco_bar <= '0' AFTER tphl_rco_bar_ud ;
ELSE)
rco_bar <= 'l1' AFTER tphl_rco_bar_ud ;
END IF;
ELSE
NULL;
END IF;
END PROCESS ; -- clk_pulse

END behavioral;

91

A6.2 WAVES HEADER FILE

I ZE S S EE S SRR S SRR SR SR ERSEREREEESERERESEREREESSESESSSSE]

-~ *kxxxk¥xx Header File for Entity: eight_bit_sync_ud_cntr

2SS S S S R RS REEREESESESEEERERESERERERSSEESESE RS
22 RS2SR SRS EEREE R ESEEEESEEEEEERERESESEEEERESERSES S

-~ Data Set Identification Information

TITLE A General Description

DEVICE_ID eight_bit_sync_ud_cntr

DATE Wed Sep 6 14:41:27 1995

ORIGIN Company X Design Team

AUTHOR Company or Person

AUTHOR Maybe Multiple ... Companies or People
DATE Wed Sep 6 14:41:27 1995

ORIGIN Modified by Company X Design Team
AUTHOR Who did it Company or Person

OTHER Any general comments you want

OTHER Built Using the WAVES-VHDL 1164 STD Libraries

-- Data Set Construction Information

waves_filename waves_pins.vhd WORK

LIBRARY waves_1164;

USE waves_1164 .waves_1164_pin_codeg.ALL;

USE waves_1164.waves_1164_logic_value.ALL;

USE waves_1164.waves_interface.ALL;

USE WORK.uut_test_pins.ALL;

waves_unit waves_objects WORK
waves_filename waves_wgen.vhd WORK

external filename synctr_vectors.txt vectors

waveform generator_procedure WORK .waves_eight_bit_sync_ud_cntr.waveform

92

A6.3 WAVES PINS PACKAGE

—— *xxxxxx** This File Was Automatically Generated | **¥¥*x*x

-— *xxxxx++* By The WAVES-VHDL Tool Set EEHEKE KK

—- *xx%*x*x* CGenerated for Entity: eight_bit_sync_ud_cntr
*x**%xx%x% This File Was Generated on: Wed Sep 6 14:41:27 1995

PACKAGE uut_test_pins IS .

TYPE test_pins IS {(clk, load_bar, up_down bar, ent_bar, enp_bar,
hgfedcba_7, hgfedcba_ 6, hgfedcba 5, hgfedcba_4, hgfedcba 3,
hgfedcba_2, hgfedcba_1, hgfedcba 0, @ 7, q_6, a5, 9 4, 9.3, q_2,
q.1l, g 0, rco_bar);

END uut_test_pins;

93

A6.4 WAVES GENERATOR PACKAGE

—— k¥kk*k%* Thig File Was Automatically Generated — *x**x*xix*

—— ***&Ad4* By The WAVES-VHDL TestBench Tool EA A A A A

—-- #k**kk¥t* Generated for Entity: eight_bit_sync_ud_cntr

—— kkdkdkdd Phig File Was Generated on: Tue May 2 07:00:52 1995

LIBRARY waves_std;

USE waves_std.waves_standard.ALL;

LIBARY waves_1164;

USE STD.TEXTIO.ALL;

USE waves_1164.waves_1164_frames.ALL;
USE waves_1164.waves_1164_pin_codes.ALL;
USE waves_1164.waves_interface.ALL;

USE WORK.waves_objects.ALL;

USE WORK.uut_test_pins.ALL;

PACKAGE wgp_eight_bit_sync_ud_cntr IS

PROCEDURE waveform(SIGNAL wpl : INOUT waves_port_list);
END wgp_eight_bit_sync_ud_cntr;

PACKAGE BODY wgp_eight_bit_sync_ud_cntr IS

-- This is the uut pin declaration pin and ordering
-~ Remember you need to match the Eternal file to This order

-- CLK, LOAD bar, Up_Down_bar, ENT bar, ENP_bar, HGFEDCBA_7, HGFEDCBA_6,
-- HGFEDCBA_5, HGFEDCBA_ 4, HGFEDCBA 3, HGFEDCBA 2, HGFEDCBA 1, HGFEDCBA_O,
--Q7, Q6, Q5 04, 03, 92, 01, Q 0, RCO_bar
PROCEDURE waveform(SIGNAL wpl : INOUT waves_port_list) IS
FILE vector_file : TEXT IS IN '"synctr_vectors.txt";

VARIABLE vector : file_glice := new_file_slice;

-- declare time constants to use or use time literals
-- constants or time literals can be used as the frame time values

CONSTANT hgfedcba: pinset:= new_pinget ((hgfedcba_7, hgfedcba_6,
hgfedcba_5, hgfedcba_4, hgfedcba_3, hgfedcba_2, hgfedcba_l1,
hgfedcba_0));

CONSTANT q: pinset:= new_pinset((q_7, q_6, 5, g_4, 9.3, q_2,
q.1l, @ 0));

CONSTANT out_pins: pinset:= new_pinset{(rco_bar));

CONSTANT in pins: pinset:=- new pinsget((lcad bar, up_down_bar));
CONSTANT enable_pins : pinset := new pinset((ent_bar, enp_bar));
CONSTANT inputs: pinset:= in_pins OR hgfedcba;

CONSTANT outputs: pinset:= out_pins OR q;

CONSTANT vector_ fsa : frame_set_array :=
new_frame_set_array(pulse_high(1i5 ns, 30 ns), clk) +
new_frame_set_array(non_return(20 ns), enable_pins) +
new_frame_sget_array{(non_return(0 ns), inputs) +

new_frame_set_array(window(20 ns, 27 ns), outputs);

VARIABLE timing : time_data := new_time_data{vector_fsa);

94

BEGIN
LOOP
read_file_slice (vector_file, vector); -- get first vector
EXIT WHEN vector.end of_file;
apply (wpl, vector.codes.ALL, delay(vector.fs_time), timing);
- or use internal slice time format as below
-- apply (wpl, vector.codes.all, Delay(ns), timing);
END LOOP;

END waveform;

END wgp_eight_bit_sync_ud_cntr;

95

A6.5 WAVES TESTBENCH CODE

~~ ¥#dwxwkd Phis File Was Automatically Generated — rx#*#*#x

—— ¥*¥dAkA% By The WAVES-VHDL Tool Set Kk ARk ok

—- ¥***k4x* Generated for Entity: eight_bit_sync_ud_cntr

-~ **xkx%i* This File Was Generated on: Wed Sep 6 14:41:32 1995

LIBRARY IEEE;
USE IEEE.STD _LOGIC_1164.ALL;

LIBRARY waves_1164;
USE waves_1164.waves_1164_utilities.ALL;

USE WORK.uut_test_pins.ALL;
USE WORK.waves_objects.ALL;

USE WORK.wgp_eight_bit_sync_ud_cntr.ALL;

-~ Include component libary references here

-~ User Must Modify And ADD component libary references here
-~ Include component libary references here

ENTITY test_bench IS
END test_bench;

ARCHITECTURE eight_bit_sync_ud_cntr_test OF test_bench IS

— o ook ok ok o ok b ok ok ok o o ok ok ok ok o ok sk ok ok ok ok o o ok b b ok b o o ok ko ok ok b ok b b b o A ok ok ok o ot o b

——dk kA AR AR RCONFTGURATION SPECIFICATION ***dkkkdkkksksdshsk

S A A AR AR R RS EEEESEEESEREEEEEEEREEEEEEEE SRR R R R

COMPONENT eight_bit_sync_ud_cntr

PORT (clk :IN STD_LOGIC;
load_bar :IN STD_LOGIC;
up_down_bar :IN STD_LOGIC;
ent_bar :IN STD_LOGIC;
enp_bar :IN STD_LOGIC; ‘
hgfedcba :IN STD_LOGIC_VECTOR{(7 DOWNTO 0);
q :0UT STD_LOGIC_VECTOR({ 7 DOWNTO 0);
rco_bar :OUT STD_LOGIC);

END COMPONENT;

-- Modify entity use statement
~-- User Must Modify modify and declare correct
- .. Architecture, Library, Component
-- Modify entity use statement
FOR ALL:eight_bit_sync_ud_cntr USE ENTITY WORK.eight_bit_sync_ud_cntr (behavioral) ;

— ok ok ok ok gk g o ot ok ok ok ak o ok ok ok ok ok ok ok b b Sk o b b ok o ok b o ok b ok o ok ok ok ok ok ok o o ok ok b b ok ok ok o A ok b

-- stimulus signals for the waveforms mapped into UUT INPUTS
— — ok ok ok ok ok sk ok ok ok ok ok ok ok ok b oF ok ok ok ok o ot ok ok o ok ok ok b ok ok o ok o ok ok ok o ok ok o ok ok ok ot ok ok ok ok oF ok ok o ok o ok

SIGNAL wav_stim_clk) :STD_LOGIC;

SIGNAL wav_stim_load_bar :STD_LOGIC;

SIGNAL wav_stim up_down_bar :STD_LOGIC;

SIGNAL wav_stim_ent_bar :STD_LOGIC;

SIGNAL wav_stim_enp_bar :STD_LOGIC;

SIGNAL wav_stim _hgfedcba :STD_LOGIC_VECTOR (7 DOWNTO 0);

A A A RS RS S S SRS EEEEEEEEEE SRR EEEEE IR EE]

-- Expected signals used in monitoring the UUT OUTPUTS

S SR E S S R SRS S SRS EES SRR ST EEESEREEEE LS TR SRS EE X

SIGNAL fail_signal :STD_LOGIC;
SIGNAL wav_expect_q :STD_ULOGIC_VECTOR(7 DOWNTO 0);
SIGNAL wav_expect_rco_bar :STD_LOGIC;

96

__**

-- UUT Output signals used In Monitoring ACTUAL vValues

__**

: STD_LOGIC_VECTOR(7 DOWNTO 0 };

:STD_LOGIC;

SIGNAL actual_gq
SIGNAL actual_rco_bar

__***

-~ Bi_directional signals used for stimulus signals mapped
_- into UUT INPUTS and also monitoring the UUT OUTPUTS

__***

-- No Bidirectional Pins On UUT

__***

-- WAVES signals OUTPUTing each slice of the waves port list

__***

SIGNAL wpl waves_port_list;

BEGIN

__***

-- process that generates the WAVES waveform
__***

waves: waveform(wpl);

__***

-- processes that convert the WPL values to 1164 Logic Values
__***

wav_stim_clk <= stim_1164 (wpl.wpl(1));
wav_stim_load_bar <= stim_1164(wpl.wpl(2));
wav_stim_up_down_bar <= stim_1164 (wpl.wpl(3));
wav_stim_ent_bar <= gtim_1164 (wpl.wpl(4 });
wav_stim_enp_bar <= stim_ 1164 (wpl.wpl(5));
wav_stim_hgfedcba <= stim_1164(wpl.wpl(6 TO 13));
wav_expect_q <= expect_1164(wpl.wpl(14 TO 21));
wav_expect_rco_bar <= expect_1164 (wpl.wpl(22));

__***

-~ UUT Port Map - Name Symantics Denote Usage

__************************f******************

ul: eight_bit_sync_ud _cntr
PORT MAP(

clk => wav_stim clk,
load_bar => wav_stim load_bar,
up_down_bar => wav_stim up_down_bar,
ent_bar => wav_sgtim _ent_bar,
enp_bar => wav_stim_enp_bar,
hgfedcba => wav_stim_hgfedcba,

q => actual_q,

rco_bar => actual_rco_bar);

97

AR A ok b ok o ok b kb ok ok ok kb o A ok ok ok ok o o e o ok ok o b ok ok ok ok ok sk ok ok b ok ok o ok ok b ok ok o b b

-- Monitor Processes To Verify The UUT Operational Response
— T g ok ok ok ok ot ok ok b b o b ok b ot b ok ok ob o ok o b ok b ok ok ok o b ok ok o b ok ok o ok ok ok sk ok ok ok ok o ok ok ok ok ok b X o b

monitor_q:
PROCESS (actual_q, wav_expect_q)
BEGIN
ASSERT (compatible (actual => actual_gq,

expected => wav_expect_q))
REPORT "Error on Q output" SEVERITY WARNING;

IF (compatible (actual_ga, wav_expect_q)) THEN

fail_sgignal <='L'; ELSE fail_signal <='1';
END IF;

END PROCESS;

monitor_rco_bar:

PROCESS (actual_rco_bar,
BEGIN

ASSERT (compatible

wav_expect_rco_bar)

{(actual => actual_rco_bar,
expected => wav_expect_rco_bar))
REPORT "Error on RCO_bar output" SEVERITY WARNING;

IF (compatible (actual_rco_bar, wav_expect_rco_bar) } THEN
fail_signal <='L'; ELSE fail signal <='1';
END IF;

END PROCESS;

END eight_bit_sync _ud_cntr test;

98

A6.6 EXTERNAL VECTOR FILE

% These are

$ C L U E E HGFEDCBA QQQ000QQ R

$ LOpPNN HGFEDCBA C

$ KADT?P 0

% Dobb b

% bwaa a

% anrr r

% rb

% a

% r

% Load zero..
1010 0 00000000 -------- -
11100 -~~----- 00000000 1

% Count Up to 79.
11100 -------- 00000001 1
11100 -—-=--=- 00000010 1
11100 -~~~ 00000011 1
11100 -------- 00000100 1
11100 ——~=——=~ 00000101 1
11100 ~——-~mmm- 00000110 1
11100 -~=-==-- 00000111 1
11100 -——----~-- 00001000 1
11100 -~=----- 00001001 1
11100 ~—=----- 00001010 1
11100 -------- 00001011 1
11100 -------- 00001100 1
11100 -——----- 00001101 1
11100 -————---- 00001110 1
11100 ~——------ 00001111 1
11100 -—-——--- 00010000 1
11100 --~---- 00010001 1
11100 ——--==—=- 00010010 1
11100 -—------ 00010011 1
11100 ---=---- 00010100 1
11100 -—~—--~- 00010101 1
11100 -------- 00010110 1

11100 ———----- 00010111 1
11100 -------- 00011000 1
11100 ---=---- 00011001 1
11100 —-~----- 00011010 1
11100 --—--—---- 00011011 1
11100 -------- 00011100 1
11100 --—-—-~-- 00011101 1
11100 -—-=-=-=- 00011110 1
11100 ----=--—- 00011111 1
11100 ---—~-=- 00100000 1
11100 ----=---- 00100001 1
11100 --==---- 00100010 1
11100 -------- 00100011 1
11100 ~-—---—- 00100100 1
11100 --——-—---- 00100101 1
11100 ~-—--m—~ 00100110 1
11100 -=—~~~-~- 00100111 1
11100 --——--—- 00101000 1
11100 ~——-——=-~ 00101001 1
11100 -------- 00101010 1
11100 --——---- 00101011 1
11100 ~==-==--- 00101100 1
11100 -—------ 00101101 1
11100 —-——--=-~ 00101110 1
11100 -------- 00101111 1
11100 ——~-—=== 00110000 1
11100 ——---=-=-- 00110001 1
11100 -——-——--- 00110010 1
11100 ~-—------ 00110011 1
11100 ----=---- 00110100 1
11100 -------- 00110101 1
11100 --—-—---- 00110110 1
11100 -------- 00110111 1
11100 -------- 00111000 1

the test vectors to test the 8 Bit Up/Down Counter using WAVES.

ns;
ns;

ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;

99

%

%

%

%

11100 -—---—-- 00111001
11100 --=------ 00111010
11100 ------- 00111011
11100 ---——--- 00111100
11100 --——---- 00111101
11100 ~---—---- 00111110
11100 -------- 00111111
11100 -——=-——~ 01000000
11100 -------- 01000001
11100 -------- 01000010
11100 —-------- 01000011
11100 ---——=-- 01000100
11100 ---——=-- 01000101
11100 -——=----- 01000110
11100 ---——--- 01000111
11100 ~—~----- 01001000
11100 -------- 01001001
11100 -~------ 01001010
11100 -------- 01001011
11100 -——=--—-- 01001100
11100 --—----- 01001101
11100 --—------ 01001110
11100 --———---- 01001111

Load 250.
10100 11111010 --------

1100 -——=-—=~ 11111010

1

11100 ~—~--—=- 11111011
11100 —=------ 11111100
11100 =-——-——- 11111101
11100 ——-—---- 11111110
11100 —-———---- 11111111
11100 —=------ 00000000
11100 ——-=m-mv 00000001
11100 ——----—- 00000010
11100 —=----—- 00000011
11100 ———=-—m= 00000100
11100 —=----—- 00000101
11100 ——=---—- 00000110
11100 —=-—---- 00000111
11100 ——=-—--- 00001000
11100 —=-m-m-m- 00001001
11100 ~—---——- 00001010
11100 —==----- 00001011
11100 ~——--—=- 00001100
11100 —=---=- 00001101
11100 —==——--- 00001110
11100 ~———m-mmm- 00001111
11100 ——=---=- 00010000

Load 100.
100 0 0 01100100 --=---=-

Count Down through 0 to 245
0

11000 ~——-—=—-- 01100100
11000 —=--—-—-- 01100011
11000 ——=---—-- 01100010
11000 —=-—--m- 01100001
11000 -———--——~ 01100000
11000 -———----- 01011111
11000 ——=--—-- 01011110
11000 —=----m- 01011101
11000 ——=m—-=- 01011100
11000 -———---—~ 01011011
11000 —==---—v 01011010
11000 —=----—- 01011001
11000 ———=--—- 01011000
11000 ——=~—~-- 01010111
11000 ——=-=—m- 01010110
11000 —=---=-- 01010101
11000 ——=---m- 01010100
11000 ——=--—-- 01010011
11000 ——----m- 01010010
11000 ——=m——=- 01010001
11000 —=-——--- 01010000
11000 ——=m--—- 01001111
11000 -—-——---- 01001110
11000 —=----—- 01001101
11000 —=------ 01001100

[s e el e e =R =R R e

Count Up from 250 to 16 to see 1

PR RRERRRRERPBREPHERRMEBRPRORP R PP

to s

PR RPRRRPRRPRRREREPEPHBERPRRP R BRR

30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30

30

ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;

ns;

f RCO_Bar goes low.

30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30

ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;

ns;

if RCO_Bar goes low.
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;

100

11000 -—------ 01001011 1 : 30 ns;
11000 --—----- 01001010 1 : 30 ns;
11000 --—----- 01001001 1 : 30 ns;
11000 --———=--- 01001000 1 : 30 ns;
11000 ~-—------ 01000111 1 : 30 ns;
11000 --—=---- 01000110 1 : 30 ns;
11000 -----——~ 01000101 1 : 30 ns;
11000 ------—- 01000100 1 : 30 ns;
11000 ---—-=-- 01000011 1 : 30 ns;
11000 --—----- 01000010 1 : 30 ns;
11000 --—--—--- 01000001 1 : 30 ns;
11000 --—------ 01000000 1 : 30 ns;
11000 --—------ 00111111 1 : 30 ns;
11000 --——----- 00111110 1 : 30 ns;
11000 -------- 00111101 1 : 30 ns;
11000 --=---——- 00111100 1 : 30 ns;
11000 --——---- 00111011 1 : 30 ns;
11000 ---—---- 00111010 1 : 30 ns:
11000 -------- 00111001 1 : 30 ns;
11000 —------—- 00111000 1 : 30 ns;
112000 ----—--- 00110111 1 : 30 ns;
11000 -——==--- 00110110 1 : 30 ns;
11000 -—~----- 00110101 1 : 30 ns;
11000 --—--—--- 00110100 1 : 30 ns;
11000 --——=--- 00110011 1 : 30 ns;
11000 --—-—---- 00110010 1 : 30 ns;
11000 ———----- 00110001 1 : 30 ns;
11000 -------- 00110000 1 : 30 ns;
11000 -------- 00101111 1 : 30 ns;
11000 -——----- 00101110 1 : 30 ns;
11000 -~~---—- 00101101 1 : 30 ns;
11000 --——----- 00101100 1 : 30 ns;
11000 -~—----- 00101011 1 : 30 ns;
11000 -—-=---- 00101010 1 : 30 ns;
11000 -~—=---- 00101001 1 : 30 ns;
11000 -------- 00101000 1 : 30 ns;
11000 -~------ 00100111 1 : 30 ns;
11000 -----—-- 00100110 1 : 30 ns;
11000 -———---- 00100101 1 : 30 ns:
11000 —-=---~--- 00100100 1 : 30 ns;
11000 ——~----- 00100011 1 : 30 ns;
11000 --—------ 00100010 1 : 30 ns;
11000 -—~----- 00100001 1 : 30 ns;
11000 -—------ 00100000 1 : 30 ns;
11000 -------- 00011111 1 : 30 ns;
11000 -----——~ 00011110 1 : 30 ns;
11000 -----—-—~ 00011101 1 : 30 ns;
11000 --———---- 00011100 1 : 30 ns;
11000 --~----- 00011011 1 : 30 ns;
11000 -—------ 00011010 1 : 30 ns;
11000 ~-—------ 00011001 1 : 30 ns;
11000 ~-—------ 00011000 1 : 30 ns;
11000 -——---—- 00010111 1 : 30 ns;
11000 -----—-- 00010110 1 : 30 ns;
11000 ---——--- 00010101 1 : 30 ns;
11000 —------- 00010100 1 : 30 ns;
11000 -——----- 00010011 1 : 30 ns;
11000 ~-—=----- 00010010 1 : 30 ns;
11000 --—------ 00010001 1 : 30 ns;
11000 -——----- 00010000 1 : 30 ns;
11000 ------—- 00001111 1 : 30 ns;
11000 -—------ 00001110 1 : 30 ns;
11000 -----—-- 00001101 1 : 30 ns;
11000 ----—--- 00001100 1 : 30 ns;
11000 —-—----—-- 00001011 1 : 30 ns;
11000 ~-—=----- 00001010 1 : 30 ns;
11000 ~------- 00001001 1 : 30 ns;
11000 ----—--- 00001000 1 : 30 ns;
11000 ~------- 00000111 1 : 30 ns;
11000 -———=--- 00000110 1 : 30 ns;
11000 --—-~-—-- 00000101 1 : 30 ns;
11000 --——---- 00000100 1 : 30 ns;
11000 --——=---- 00000011 1 : 30 ns;
11000 --——----- 00000010 1 : 30 ns;
11000 --—----- 00000001 1 : 30 ns;
11000 -~------ 00000000 0 : 30 ns;
11000 -------- 11111111 1 : 30 ns;
11000 --—----- 11111110 1 : 30 ns;
11000 —------- 11111101 1 : 30 ns;
11000 ---=----- 11111100 1 : 30 ns;
11000 --—--=-- 11111011 1 : 30 ns;

101

11000 ---—---- 11111010 1 30 ns;
11000 -———----- 11111001 1 30 ns;
11000 ---~---- 11111000 1 30 ns;
11000 ~-—-=----- 11110111 1 30 ns;
11000 ~--—------ 11110110 1 : 30 ns;
11000 ~~=----- 11110101 1 : 30 ns;

Load zero, count up to 2, disable counting with ENT_Bar and ENP_Bar
for two clocks then count down past 0 to 253.
101 0 0 00000000 ~------~ - : 30 ns;
11100 ~-—--=-- 00000000 1 : 30 ns;
11111 -—------- 00000001 1 : 30 ns;
11111 -------- 00000010 1 30 ns;
11000 -----—-- 00000010 1 30 ns;
11000 --—------ 00000010 1 30 ns;
11000 -------- 00000001 1 30 ns;
11000 -———-——- 00000000 0 30 ns;
11000 -------- 11111111 1 30 ns;
11000 -~----~~ 11111110 1 30 ns;
11000 ——=----- 11111101 1 30 ns;

Load zero, count up to 2, disable counting with only ENT_Bar high

for two clocks then count down past 0 to 253.
1010 0 00000000 --~-~--- - : 30 ns;
11100 -------- 00000000 1 : 30 ns;
11110 -------- 00000001 1 30 ns;
111 0 ----——-~ 00000010 1 30 ns;
11000 -------- 00000010 1 30 ns;
11000 --=------ 00000010 1 30 ns;
11000 -------- 00000001 1 30 ns;
11000 -------- 00000000 0O 30 ns;
11000 --—------ 11111111 1 30 ns;
11000 ——~------ 11111110 1 30 ns;
11000 -———=---- 11111101 1 30 ns;

Load zero, count up to 2, disable counting with only ENP_Bar high

for two clocks then count down past 0 to 253.
1010 0 00000000 ---=----- - : 30 ns;
1 100 ---~——-- 00000000 1 30 ns;
11101 -————-=- 00000001 1 30 ns;
11101 -~~-—--=-=~ 00000010 1 30 ns;
11000 ——==---- 00000010 1 30 ns;
11000 ==-==--- 00000010 1 30 ns;
11000 ----=---- 00000001 1 30 ns;
11000 -———===-- 00000000 O 30 ns;
11000 --=-=-=--- 11111111 1 30 ns;
11000 --=------ 11111110 1 30 ns;
11000 -=--=-=--- 11111101 1 30 ns;

102

A71

APPENDIX 7: 54LS/741.5299 8 - INPUT
UNIVERSAL SHIFT/STORAGE REGISTER

VHDL MODEL

-- TITLE: FAIRCHILD 8-input universal shift/storage register; 54LS/4LS299
-- DATE : 16 June 1995

-~ VERSION : 2.0
-- FILENAME : register_with_timing.vhd
-- FUNCTION : Entity and architecture for 54LS/74LS298; '299 is 8-bit universal

~- shift/storage
-- register with 3-state outputs. Four modes of operation are possible: hold(store)
-- ,shift left, shift right and load data. The parallel load inputs and -- flip-flop

-~ outputs are multiplexed to reduce total number of package pins. Separate outputs
-- are provided for flip-flops Q0 and Q7 to allow easy cascading. A separate active
-- low master reset is used to reset te register.

-- Dataflow Model.

-~ AUTHOR : James M. Nagy
-- ORGANIZATION: Rome Laboratory

-- PURPOSE AND USE: This was written as an bi-directional example to help build the
-- Rome Laboratory WAVES tools.

~- TIMING: Max

-- DEVELOPMENT PLATFORM : Sun Sparc Station IPX
-- VHDL SOFTWARE VERSION: Synopsys 3.3a

-—- HISTORY:
-- 28 Apr 95 - v1.0 - Initial version, functional only, no timing.
-- 31 May 95 - v2.0 - Final version with worst case timing.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY shift_register IS

GENERIC(to_min : TIME := 2 ns; clk_to_io : TIME := 32 ns;
clk_to_q0_or_7 : TIME := 34 ns; reset_to_outputs : TIME := 36 ns;
out_enable_z_to_hi : TIME := 25 ns; out_enable_hi_to_z : TIME := 27 ns;
out_enable_z_to_lo : TIME := 30 ns; out_enable_lo_to_z : TIME := 34 ns;
getup_data_to_clk : TIME := 30 ns; setup_selection_to_clk : TIME := 41 ns;
hold_all_inputs_to_clk : TIME := 0 ns; reset_to_clock _hi : TIME := 5 mns;
reset_lo_pulgse_width : TIME := 22 ns; clk_hi_pulse_width : TIME := 30 ns);

PORT(selection, enable_out : IN STD_LOGIC_VECTOR(0 TO 1);
clock,data_0,data_7,master_resget : IN STD_LOGIC;
jo : INOUT STD_LOGIC_VECTOR(0 TO 7) BUS;
out_0,out_7 : OUT STD_LOGIC);

BEGIN
-- Master reset width check
ASSERT
(NOT ({(master_reset = 'O' AND NOT master_reset'STABLE) AND

master_reset'LAST_EVENT >= reset_lo_pulse_width))
-- NOT Master_Reset'DELAYED'STABLE(Reset_lo_pulse_width)))
REPORT
"RESET PULSE WIDTH TOO SHORT"
SEVERITY WARNING;

103

-~ Minimum clock width pulse check
ASSERT
(NOT ((clock='1' AND NOT clock'STABLE) AND
clock'LAST_EVENT >= clk_hi_pulse_width))
-- NOT Clock'delayed'stable{clk_hi_pulse_width)))
REPORT
"CLOCK PULSE WIDTH TOO SHORT"
SEVERITY WARNING;

-- Setup timing checks for seléctién, IO, Data 0 and Data_7

ASSERT
(NOT (clock = 'l' AND clock'EVENT AND NOT
selection' STABLE (setup_selection_to_clk)))
REPORT

"Setup TIME VIOLATION ON selection PINS"
SEVERITY WARNING;

ASSERT
(NOT {clock = 'l1' AND clock'EVENT AND NOT io'STABLE (setup_data_to_clk) AND
gelection ="11")) :
REPORT

*Setup TIME VIOLATION ON IO PINS"
SEVERITY WARNING;

ASSERT

(NOT (clock = '1' AND clock'EVENT AND NOT data_0'STABLE(setup_data_to_clk)))
REPORT

"Setup TIME VIOLATION.ON Data_ 0 PIN"
SEVERITY WARNING;

ASSERT .

(NOT (clock = ‘1' AND clock'EVENT AND NOT data_7'STABLE (setup_data_to_clk)))
REPORT

*"Setup TIME VIOLATION ON Data_7 PIN"
SEVERITY WARNING;

-- Hold timing checks for IO,
ASSERT
(NOT (clock = '1' AND io'EVENT AND NOT clock'STABLE (hold_all_inputs_to_clk}))
REPORT
"HOLD TIME VIOLATION ON IO PINS"
SEVERITY WARNING;

ASSERT
(NOT (clock = 'l' AND selection'EVENT AND NOT
clock' STABLE (hold_all_inputs_to_clk)))

REPORT

"HOLD TIME VIOLATION ON selection PINS"
SEVERITY WARNING;

ASSERT
(NOT (clock = 'l' AND data_O0'EVENT AND NOT
clock'STABLE (hold_all_inputs_to_clk)))
REPORT

"HOLD TIME VIOLATION ON Data_0 PIN"
SEVERITY WARNING;

ASSERT
{NOT (clock = 'l1' AND data_7'EVENT AND NOT
clock'STABLE (hold_all_inputs_to_clk)))
REPORT

"HOLD TIME VIOLATION ON Data_7 PIN"
SEVERITY WARNING;

END shift_register;

104

%

ARCHITECTURE behavioral OF shift_register IS

SIGNAL q : STD_LOGIC_VECTOR{(0 TO 7) REGISTER;
BEGIN
memory _reset: BLOCK (master_reset = '0')
BEGIN
g <= GUARDED "00000000";
END BLOCK;
clocking : BLOCK (clock = 'l' AND NOT clock'STABLE AND master_reset = '1')
BEGIN
shift_right: BLOCK(selection = "10" AND GUARD)
BEGIN

Q@ <= GUARDED data_0 & (0 TO 6);
END BLOCK shift_right;

shift_left: BLOCK(selection = "01" AND GUARD)
BEGIN
qg<= GUARDED q(1 TO 7) & data_7;
END BLOCK shift_left;

parrel_load : BLOCK(selection = "11" AND GUARD)
BEGIN
@<= GUARDED io;
END BLOCK parrel_load;

- Hold : BLOCK(selection = "00" AND GUARD)
-- BEGIN

-= Q <= GUARDED Q;

-- END BLOCK Hold;

END BLOCK clocking;

check_oce : BLOCK (enable_out = "00")
BEGIN
io <= GUARDED q AFTER reset_to_outputs WHEN @ = "00000000" ELSE
Q@ AFTER out_enable_z_to_hi WHEN io = "2272%Z%Z%2Z7" ELSE

q@ AFTER clk_to_io;
END BLOCK check_oe;

check_z : BLOCK{ TRUE)

BEGIN

io(0) <= GUARDED 'Z' AFTER out_enable_hi_to_z WHEN io(0) = 'l1' ELSE
'Z' AFTER out_enable_lo_to_z;

io(l) <= GUARDED 'Z' AFTER out_enable_hi_to_z WHEN io(0) = 'l' ELSE
'Z' AFTER out_enable_lo_to_z; : .

io(2) <= GUARDED 'Z' AFTER out_enable_hi_to_z WHEN io(0) = '1' ELSE
'Z' AFTER out_enable_lo_to_ z;

io(3) <= GUARDED 'Z' AFTER out_enable_hi to_z WHEN io(0) = 'l' ELSE
'Z' AFTER out_enable_lo_to_z;

io(4) <= GUARDED 'Z' AFTER out_enable_hi_to_z WHEN io(0) = 'l' ELSE
'*Z' AFTER out_emnable_lo_to_z;

io(5) <= GUARDED 'Z' AFTER out_enable_hi_to_z WHEN io(0) = 'l' ELSE
'Z' AFTER out_enable_lo_to_z;

io(6) <= GUARDED 'Z' AFTER out_enable_hi_to_z WHEN io(0) = 'l' ELSE
'Z' AFTER out_enable_lo_to_z;

io(7) <= GUARDED 'Z' AFTER out_enable_hi_to_z WHEN io(0) = '1' ELSE

'Z' AFTER out_enable_lo_to_z;
END BLOCK check_z;

out_0 <= q(0) AFTER clk_to_q0_or_7;
out_7 <= q(7) AFTER clk_to_q0_or_7;

END behavioral;

105

A7.2 WAVES HEADER FILE

**

- *xx+%¥** Header File for Entity: shift_register

**
**

-~ Data Set Identification Information

TITLE A General Description

DEVICE_ID shift_register

DATE Fri Jul 28 10:44:44 1995

ORIGIN Company X Design Team

AUTHOR Company or Person

AUTHOR Maybe Multiple ... Companies or People
DATE Fri Jul 28 10:44:44 1995

ORIGIN Modified by Company X Design Team
AUTHOR wWho did it Company or Person

OTHER Use ‘TestBench register_tstbench.vhd
OTHER Any general comments you want

OTHER Built Using the WAVES-VHDL 1164 STD Libraries

-- Dpata Set Construction Information

waveg_filename register_pins.vhd WORK

LIBRARY waves_1164;

USE waves_1164.waves_1164_pin_codes.ALL;

USE waves_1164 .waves_1164_logic_value.ALL;

USE waves_1l164.waves_interface.ALL;

USE WORK.uut_test_pins.ALL;

waves_unit waves_objects WORK
waves_£filename register_wgen.vhd WORK

external _filename vectors.txt vectors
waveform_generator_procedure WORK .waves_shift_register.waveform

106

A7.3

WAVES PINS PACKAGE

- *xddk¥¥% Thig File Was Automatically Generated
~- #**xxx¥%x* By The WAVES-VHDL TestBench Tool
- #*x#xi** Qenerated for Entity: shift_register

LER B S 8 8
koA Rk ok ok ko

—- *%***4** Thig File Was Generated on: Fri Jul 28 10:44:44 1995

PACKAGE uut_test_pins IS

TYPE test_pins IS (selection_0, selection_l, enable_out_0,
clock, data_0, data_7, master_reset, io_0, io_1,

io_ 5, io_6, io_7, out_0, out_7);
END uut_test_pins;

107

enable_out_1,
io_2, io_3, io_4,

A7.4 WAVES GENERATOR PACKAGE

d ok ok ok ok ok k%

—- xkx*x*x*x Thig File Was Automatically Generated
RS S 2 2 8 84

—— *%*****% By The WAVES-VHDL TestBench Tool
-~ w¥*#x%%* Generated for Entity: shift_register :
—- *xx¥**** Thig File Was Generated on: Wed Jun 7 17:06:15 1995

LIBRARY waves_std;

USE waves_std.wavesg_standard.ALL;
LIBRARY waves_1164;

USE STD.TEXTIO.ALL;

USE waves_1164.waves_1164_frames.ALL;
USE waves_1164.waves_1164_pin_codes.ALL;
USE waves_1164.waves_interface.ALL;

USE WORK.waves_objects.ALL;

USE WORK.uut_test_pins.ALL;

PACKAGE wgp_shift_register IS

PROCEDURE waveform(SIGNAL wpl : INOUT waves_port_list);
END wgp_shift_register;

PACKAGE BODY wgp_shift_register IS

-- This is the uut pin declaration pin and ordering
-- Remember you need to match the External file to This order

--selection_0, selection_l, enable_out_0, enable_out_1, clock, data 0,
-- data_7, master_reset, io_0, io_1l, io_2, ic_3, io_4, io_5, io_6, io.7,
-- out_0, out_7
PROCEDURE waveform(SIGNAL wpl : INOUT waves_port_list) IS
FILE vector_file : TEXT IS IN "vectors.txt"';
VARIABLE vector : file_slice := new_file_slice;

-- declare time constants to use or use time literals
-- constants or time literals can be used as the frame time values

CONSTANT selection: pinset:= new_pinset({ selection_0, selection_1));
CONSTANT enable_out: pinset:= new_pinset ({ enable_out_0, enable out_1));

CONSTANT io: pinset:= new_pinset((io_0, io_1l, io_2, io_ 3, io_4,
io_5, io_6, i0_7));

CONSTANT outputs: pinset:= new_pinset((out_0, out_7));

CONSTANT in_pins: pinset:- new_pinset((data_0, data_7,
master_reset));

CONSTANT inputs: pinset:= in_pins OR selection OR
enable_out;

108

-- You Must Modify the Frame Sets, Cycle Times, Frame Times, Groupings
-- This file Is only a Template to get you started

-- Declare The Frame Sets (timing sets)

VARIABLE wtl : wave_timing list (1 TO 2) := (

-- Frame Set 1

({ delay => delay (100 ns),
timing => new_time_data(
new_frame_set_array(pulse_high(50 ns, 80 ns), clock) +
new_frame_set_array(window(85 ns, 95 ns}), io) +

-- or drive format New_frame_set_array(Non_return(ns), IO) +

new_frame_set_array(non_return(5 ns), inputs) +
new_frame_set_array(window(85 ns, 95 mns), outputs)

1),

-- Frame Set 2

(delay => delay (100 ns),
timing => new time_data(
new_frame_set_array(pulse_high(50 ns, 80 ns), clock) +

-- select compare New_frame_set_array (Window(ns, ns), IO) +

new_frame_set_array{non_return(5 ns), io) +
new_frame_set_array(non_return(5 ns), inputs) +
new_frame_set_array{window(85 ns, 95 ns), outputs)

Y))

BEGIN
LOOP
read_file_slice (vector_file, vector); -- get first vector
EXIT WHEN vector.end of_file;
apply (wpl, vector.codes.ALL, wtl (vector.£fs_integer));
END LOOP;

END waveform;

END wgp_shift_register;

109

A7.5

WAVES TESTBENCH CODE

ok ok ok ok ko

-~ #xkxxxxx Thig File Was Automatically Generated
kK ko R

—- ***xxx** By The WAVES-VHDL TestBench Tool
-~ **kk**** Geonerated for Entity: shift_register
- #x¥*¥xxxx Thig File Was Generated on: Fri Jul 28 10:44:44 1995

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

LIBRARY waves_1164;
USE waves_1l164.waves_1164_utilities.ALL;

USE WORK.uut_test_pins.ALL;

USE WORK.waves_objects.ALL;

USE WORK.wgp_shift_register.ALL;

-- Include component libary references here

-- User Must Modify And ADD component libary references here
-- Include component libary references here

ENTITY test_bench IS
END test_bench;

ARCHITECTURE shift_register_test OF test_bench IS

T IZ IS FER S SE S S S S S EEEESE SR SR ERESEE RS S EEEEEESS

__***********CONFIGURATION SPECIFICATION ok ok ok ok o ok ok A ok Kk k

P E T I IS FT RS EEE SRS S S S S ES S S S RS RS RS R SEESERSEERER SRS

COMPONENT shift_register

PORT (selection :IN STD_LOGIC_VECTOR(0 TO
enable_out :IN STD_LOGIC_VECTOR(O TO
clock :IN STD_LOGIC;
data_0 :IN STD_LOGIC;
data_7 :IN STD_LOGIC;
master_reset :IN STD_LOGIC;
io :INOUT STD_LOGIC_VECTOR(0 TO
out_0 :OUT STD_LOGIC;
out_7 :OUT STD_LOGIC) ;

END COMPONENT ;

-~ Modify entity use statement

-- User Must Modify modify and declare correct
-- .. Architecture, Library, Component

-- Modify entity use statement

FOR ALL:shift_register USE ENTITY WORK.shift_register (behavioral);
s s o o b ok b ok ok o b o o o ok b b ok ok ok ok ob ok ok sk ok ok ok b ok ok ok Sk ok ok o b b b ok b ok b b b ok b ok ok ok ok Sk R ok o b

-- stimulus signals for the waveforms mapped into UUT INPUTS

T I FIEESEE RIS S S S S SIS RS S S SRS SRS SRS R R EEESERERERSEESESESSS

SIGNAL wav_stim_selection + STD_LOGIC_VECTOR(0T0 1);
SIGNAL wav_stim_enable_out :STD_LOGIC_VECTOR (0T0 1);
SIGNAL wav_stim_clock : STD_LOGIC;
SIGNAL wav_stim data_0 :STD_LOGIC;
SIGNAL wav_stim data_7 +STD_LOGIC;
SIGNAL wav_stim_master_reset :STD_LOGIC;
S o ok sk b ok ok ok b ok ok S b ok b o ok ok ok ok ok sk ok o b ok ok ok ot ok ok ok ok b ok ok ok b R b b ok o ok ok ok o R b ok b
-- Expected signals used in monitoring the UUT OUTPUTS
ok ok sk ok sk ok ok ok ok R ok ok b Sk ok sk ok o ok o ok ok ok ok b ok sb ok o o St ok o ok ok b o ok oA ok sk ob b Sk ok ok ok b ok A ok
SIGNAL fail signal :STD_LOGIC;
SIGNAL wav_expect_io :STD_ULOGIC_VECTOR(O TO 7);
SIGNAL wav_expect_out_0 : STD_LOGIC;
SIGNAL wav_expect_out_7 :STD_LOGIC;

110

1)
1)

7

—_ - — —

R T L A2 2R 2R R XSS R 2R SR SRR SR 2SS RS Rttt gl

-- UUT Output signals used In Monitoring ACTUAL Values

e ok ok o ok o ok ok b 3k ok o ok b o o ok ob ok ok ok ok ok o ok s o o ok o ok ok o ok sk ok o S of b ok o b ok oF ok b ok b ok b ot

:STD_LOGIC;
:STD_LOGIC;

SIGNAL actual_out_0
SIGNAL actual_out_7

Sk ok ok ok b ok ok ok ok sk ok ok ok ok b ok ok ok ok ok b ok o ok ok o ok oF b ok o ok b A ok b ok sk ok ot ok ok ok ok ob ok ok o ok ok ok b ok b ok

-- Bi_directional signals used for stimulus signals mapped

-- into UUT INPUTS and also monitoring the UUT OUTPUTS
ke ok ok ot o A ok b b ok o ok o ok ok ok ok ok ok ok ok ok ok A ok ok b b b o o ot ok ok ok ok ok ok ok ok A ok ok b ok b kb ok ok b b ok o R b

SIGNAL bi_direc_io :STD_LOGIC_VECTOR(O TO 7);

sk ok ok ok sk ok ok ok ok sk o o o ok ok ok ok o b b sk ok o oF ok ok A ok ok ok ok ok ok ok ok ok ok ob A ok ok b ok sk ok b sk ok ok ok ok ok b ok ok ok o b ok ok

-- WAVES signals OUTPUTing each slice of the waves port list

kR Aok ko k kbbb bk bk bk kb Ak kR bk kbbb kA R Kkt R A A A AR

SIGNAL wpl waves_port_list;

BEGIN

T T E T T EF RS TEESEEEEE SRS LRSS RS SRS RS R E RN EEEEE SRS

-- process that generates the WAVES waveform
__***

waves: waveform(wpl);

otk sk sk o ok ok ok ok ok ok ok sk ok ok ok ok ok R o ok sk b ok ok ok ok ok 3E o ok ok ok ok sk ok o ok ob ok Jk ok ok b R ok o ok ok o ok ok ok sk b b b sk A b b bk

-- processes that convert the WPL values to 1164 Logic Values
o ok ok ok ok ok ok ok ok ok b ok ok st sk ok 2k ok o ok ok o ok Sk ok ok ok o ok A SE gk sk ok b ok b b ok o ok ok o ok ok ok ok b b o S o ok ok b b b b Sk b A o

wav_stim_selection <= gtim 1164 (wpl.wpl(1 TO 2))
wav_stim_enable_out <= gtim 1164 (wpl.wpl(3 TO 4))
wav_stim_clock <= stim_ 1164 (wpl.wpl(5 });
wav_stim_data_0 <= stim 1164 (wpl.wpl(6 });
wav_stim_data_7 <= stim 1164 (wpl.wpl(7 });
wav_stim master_reset <= gtim 1164 (wpl.wpl(8)})};
bi_direc_io <= bi_dir_1164(wpl.wpl(9 to 16
wav_expect_io <= expect_1164 (wpl.wpl(9 TO 16
wav_expect_out_0 <= expect_1164 (wpl.wpl(17));
wav_expect_out_7 <= expect_1164 (wpl.wpl(18));

PR TP EFEEEERES PR RS ESEEFS S SRS EES RS SRS RS

-- UUT Port Map - Name Symantics Denote Usage
__***

ul: shift_register
PORT MAP(
selection
enable_out
clock
data_0
data_7
master_reset
io
out_0
out_7

| T VT O [A 1

v

wav_stim_selection,
wav_stim_enable_out,
wav_stim_clock,
wav_stim_data_0,
wav_sgtim_data_7,
wav_stim_master_ reset,
bi_direc_io,
actual_out_0,
actual_out_7);

vV Vv

VVVVVYV

111

sk gk b b b ok ok ok oF ok o s ok o ok ok s ok o o Sk ok st ok ob o o ok ok sk ok sk ok b ok b ok ok ok o ok ok ok b bk sk ok ok ok ok o

-- Monitor Processes To Verify The UUT Operational Response
ok ok ok b ok ok ok ok ok o o s ok ok ok ok ok ok ok ok ok ok ok ok ok s ok ok ok sk ok ok o ok sk ok b sk o oF b ok ok b b ok ok ok b b ok b o b ok ok

monitor_io:
PROCESS (bi_direc_io, wav_expect_io)
BEGIN
ASSERT (compatible (actual => bi_direc_io,
expected => wav_expect_io))
REPORT "Error on IO output” SEVERITY WARNING;

IF (compatible (bi_direc_io, wav_expect_io)) THEN
fail_signal <='L'; ELSE fail_signal <='1l';
END IF;

END PROCESS;

monitor_out_0:
PROCESS{actual_out_0, wav_expect_out_0)
BEGIN
ASSERT (compatible (actual => actual_out_0,
expected => wav_expect_out_0))
REPORT "Error on OUT_0 output" SEVERITY WARNING;

IF (compatible (actual_out_0, wav_expect_out_0)) THEN
fail_signal <='L'; ELSE fail_signal <='1';
END IF;

END PROCESS;

monitor_out_7:
PROCESS (actual_out_7, wav_expect_out_7)
BEGIN
ASSERT (compatible (actual => actual_out_7,
- expected => wav_expect_out_7))
REPORT "Error on OUT_7 output" SEVERITY WARNING;

IF (compatible (actual_out_7, wav_expect_out_7)) THEN
fail signal <='L'; ELSE fail_signal <='1l"';
END IF;

END PROCESS;

END shift_register_test;

112

A7.6 EXTERNAL VECTOR FILE

% 01 07
% 11 12 k tt
% ee ee l aa
$ s8s oo c dd
% clear
- 00 - -
$shift right
10 001 11
10 00 1 11
10 001 11
10 00 1 11
10 00 1 11
10 00 1 11
$shift left
01 001 11
01 001 11
01 001 11
01 001 11
01 00 1 10
% hold
00 001 10
00 00 1 10
00 00 1 10
00 00 1 10
% load
11 101 10
% enable & shift
01 011 01
01 001 01

ERa N

B e R el =

Ry

01234567
00000000

11111111

00000000

10000000
11000000
11100000
11110000
11111000
11111100

11111001
11110011
11100111
11001111
10011110

10011110
10011110
10011110
10011110

01010101

27272272227
01010111

#U.S. GOVERNMENT PRINTING OFFICE:

07
aq

00

10
10
10
10
10
10

11
11
11
11
10

10
10
10
10

01

11
01

e

oo n

e e e =

PRREEPR

(R

113

1996-710-126-20180

MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

